145 votes

Créer des lots dans linq

Quelqu'un peut-il suggérer un moyen de créer des lots d'une certaine taille en linq ?

Idéalement, je voudrais pouvoir effectuer des opérations par tranches d'une certaine quantité configurable.

2voto

user2088029 Points 28

Ainsi, avec un chapeau fonctionnel, cela semble trivial....mais en C#, il y a quelques inconvénients importants.

vous verrez probablement cela comme un unfold de IEnumerable (googlez-le et vous vous retrouverez probablement dans des documents Haskell, mais il peut y avoir des choses F# qui utilisent unfold, si vous connaissez F#, louchez sur les documents Haskell et cela aura du sens).

Unfold est lié à fold ("aggregate") sauf qu'au lieu d'itérer à travers le IEnumerable en entrée, il itère à travers les structures de données en sortie (c'est une relation similaire entre IEnumerable et IObservable, en fait je pense que IObservable implémente un "unfold" appelé generate...)

de toute façon D'abord, vous avez besoin d'une méthode unfold, je pense que cela fonctionne (malheureusement, cela va éventuellement faire sauter la pile pour les grandes "listes"... vous pouvez écrire cela en toute sécurité en F# en utilisant yield ! plutôt que concat) ;

    static IEnumerable<T> Unfold<T, U>(Func<U, IEnumerable<Tuple<U, T>>> f, U seed)
    {
        var maybeNewSeedAndElement = f(seed);

        return maybeNewSeedAndElement.SelectMany(x => new[] { x.Item2 }.Concat(Unfold(f, x.Item1)));
    }

C'est un peu obtus parce que le C# n'implémente pas certaines des choses que les langages fonctionnels prennent pour acquis... mais il prend essentiellement une graine et génère ensuite une réponse "Maybe" de l'élément suivant dans le IEnumerable et la graine suivante (Maybe n'existe pas en C#, donc nous avons utilisé IEnumerable pour le simuler), et concatène le reste de la réponse (je ne peux pas garantir la complexité "O(n ?)" de ceci).

Une fois que vous avez fait ça, alors ;

    static IEnumerable<IEnumerable<T>> Batch<T>(IEnumerable<T> xs, int n)
    {
        return Unfold(ys =>
            {
                var head = ys.Take(n);
                var tail = ys.Skip(n);
                return head.Take(1).Select(_ => Tuple.Create(tail, head));
            },
            xs);
    }

tout semble assez propre... vous prenez les "n" éléments comme l'élément "suivant" dans l'IEnumerable, et la "queue" est le reste de la liste non traitée.

s'il n'y a rien dans la tête...c'est fini...vous retournez "Nothing" (mais simulé comme un IEnumerable> vide)...sinon vous retournez l'élément de tête et la queue à traiter.

vous pouvez probablement faire cela en utilisant IObservable, il y a probablement une méthode de type "Batch" déjà là, et vous pouvez probablement l'utiliser.

Si le risque de débordement de pile vous préoccupe (ce qui est probablement le cas), vous devriez l'implémenter en F# (et il existe probablement déjà une bibliothèque F# (FSharpX ?) à cet effet).

(Je n'ai effectué que quelques tests rudimentaires, il peut donc y avoir des bogues bizarres).

1voto

Kaushik Points 1675

Je m'inscris très tard, mais j'ai trouvé quelque chose de plus intéressant.

Donc on peut utiliser ici Skip y Take pour de meilleures performances.

public static class MyExtensions
    {
        public static IEnumerable<IEnumerable<T>> Batch<T>(this IEnumerable<T> items, int maxItems)
        {
            return items.Select((item, index) => new { item, index })
                        .GroupBy(x => x.index / maxItems)
                        .Select(g => g.Select(x => x.item));
        }

        public static IEnumerable<T> Batch2<T>(this IEnumerable<T> items, int skip, int take)
        {
            return items.Skip(skip).Take(take);
        }

    }

Ensuite, j'ai vérifié avec 100000 enregistrements. Le bouclage prend plus de temps seulement dans le cas de Batch

Code de l'application console.

static void Main(string[] args)
{
    List<string> Ids = GetData("First");
    List<string> Ids2 = GetData("tsriF");

    Stopwatch FirstWatch = new Stopwatch();
    FirstWatch.Start();
    foreach (var batch in Ids2.Batch(5000))
    {
        // Console.WriteLine("Batch Ouput:= " + string.Join(",", batch));
    }
    FirstWatch.Stop();
    Console.WriteLine("Done Processing time taken:= "+ FirstWatch.Elapsed.ToString());

    Stopwatch Second = new Stopwatch();

    Second.Start();
    int Length = Ids2.Count;
    int StartIndex = 0;
    int BatchSize = 5000;
    while (Length > 0)
    {
        var SecBatch = Ids2.Batch2(StartIndex, BatchSize);
        // Console.WriteLine("Second Batch Ouput:= " + string.Join(",", SecBatch));
        Length = Length - BatchSize;
        StartIndex += BatchSize;
    }

    Second.Stop();
    Console.WriteLine("Done Processing time taken Second:= " + Second.Elapsed.ToString());
    Console.ReadKey();
}

static List<string> GetData(string name)
{
    List<string> Data = new List<string>();
    for (int i = 0; i < 100000; i++)
    {
        Data.Add(string.Format("{0} {1}", name, i.ToString()));
    }

    return Data;
}

Le temps pris est comme ça.

Premier - 00:00:00.0708 , 00:00:00.0660

Deuxième (prendre et sauter un) - 00:00:00.0008, 00:00:00.0008

1voto

leat Points 466

J'ai écrit une implémentation personnalisée de IEnumerable qui fonctionne sans linq et garantit une seule énumération sur les données. Elle accomplit également tout cela sans nécessiter de listes ou de tableaux de sauvegarde qui provoquent des explosions de mémoire sur de grands ensembles de données.

Voici quelques tests de base :

    [Fact]
    public void ShouldPartition()
    {
        var ints = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
        var data = ints.PartitionByMaxGroupSize(3);
        data.Count().Should().Be(4);

        data.Skip(0).First().Count().Should().Be(3);
        data.Skip(0).First().ToList()[0].Should().Be(0);
        data.Skip(0).First().ToList()[1].Should().Be(1);
        data.Skip(0).First().ToList()[2].Should().Be(2);

        data.Skip(1).First().Count().Should().Be(3);
        data.Skip(1).First().ToList()[0].Should().Be(3);
        data.Skip(1).First().ToList()[1].Should().Be(4);
        data.Skip(1).First().ToList()[2].Should().Be(5);

        data.Skip(2).First().Count().Should().Be(3);
        data.Skip(2).First().ToList()[0].Should().Be(6);
        data.Skip(2).First().ToList()[1].Should().Be(7);
        data.Skip(2).First().ToList()[2].Should().Be(8);

        data.Skip(3).First().Count().Should().Be(1);
        data.Skip(3).First().ToList()[0].Should().Be(9);
    }

La méthode d'extension pour partitionner les données.

/// <summary>
/// A set of extension methods for <see cref="IEnumerable{T}"/>. 
/// </summary>
public static class EnumerableExtender
{
    /// <summary>
    /// Splits an enumerable into chucks, by a maximum group size.
    /// </summary>
    /// <param name="source">The source to split</param>
    /// <param name="maxSize">The maximum number of items per group.</param>
    /// <typeparam name="T">The type of item to split</typeparam>
    /// <returns>A list of lists of the original items.</returns>
    public static IEnumerable<IEnumerable<T>> PartitionByMaxGroupSize<T>(this IEnumerable<T> source, int maxSize)
    {
        return new SplittingEnumerable<T>(source, maxSize);
    }
}

Il s'agit de la classe de mise en œuvre

    using System.Collections;
    using System.Collections.Generic;

    internal class SplittingEnumerable<T> : IEnumerable<IEnumerable<T>>
    {
        private readonly IEnumerable<T> backing;
        private readonly int maxSize;
        private bool hasCurrent;
        private T lastItem;

        public SplittingEnumerable(IEnumerable<T> backing, int maxSize)
        {
            this.backing = backing;
            this.maxSize = maxSize;
        }

        public IEnumerator<IEnumerable<T>> GetEnumerator()
        {
            return new Enumerator(this, this.backing.GetEnumerator());
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return this.GetEnumerator();
        }

        private class Enumerator : IEnumerator<IEnumerable<T>>
        {
            private readonly SplittingEnumerable<T> parent;
            private readonly IEnumerator<T> backingEnumerator;
            private NextEnumerable current;

            public Enumerator(SplittingEnumerable<T> parent, IEnumerator<T> backingEnumerator)
            {
                this.parent = parent;
                this.backingEnumerator = backingEnumerator;
                this.parent.hasCurrent = this.backingEnumerator.MoveNext();
                if (this.parent.hasCurrent)
                {
                    this.parent.lastItem = this.backingEnumerator.Current;
                }
            }

            public bool MoveNext()
            {
                if (this.current == null)
                {
                    this.current = new NextEnumerable(this.parent, this.backingEnumerator);
                    return true;
                }
                else
                {
                    if (!this.current.IsComplete)
                    {
                        using (var enumerator = this.current.GetEnumerator())
                        {
                            while (enumerator.MoveNext())
                            {
                            }
                        }
                    }
                }

                if (!this.parent.hasCurrent)
                {
                    return false;
                }

                this.current = new NextEnumerable(this.parent, this.backingEnumerator);
                return true;
            }

            public void Reset()
            {
                throw new System.NotImplementedException();
            }

            public IEnumerable<T> Current
            {
                get { return this.current; }
            }

            object IEnumerator.Current
            {
                get { return this.Current; }
            }

            public void Dispose()
            {
            }
        }

        private class NextEnumerable : IEnumerable<T>
        {
            private readonly SplittingEnumerable<T> splitter;
            private readonly IEnumerator<T> backingEnumerator;
            private int currentSize;

            public NextEnumerable(SplittingEnumerable<T> splitter, IEnumerator<T> backingEnumerator)
            {
                this.splitter = splitter;
                this.backingEnumerator = backingEnumerator;
            }

            public bool IsComplete { get; private set; }

            public IEnumerator<T> GetEnumerator()
            {
                return new NextEnumerator(this.splitter, this, this.backingEnumerator);
            }

            IEnumerator IEnumerable.GetEnumerator()
            {
                return this.GetEnumerator();
            }

            private class NextEnumerator : IEnumerator<T>
            {
                private readonly SplittingEnumerable<T> splitter;
                private readonly NextEnumerable parent;
                private readonly IEnumerator<T> enumerator;
                private T currentItem;

                public NextEnumerator(SplittingEnumerable<T> splitter, NextEnumerable parent, IEnumerator<T> enumerator)
                {
                    this.splitter = splitter;
                    this.parent = parent;
                    this.enumerator = enumerator;
                }

                public bool MoveNext()
                {
                    this.parent.currentSize += 1;
                    this.currentItem = this.splitter.lastItem;
                    var hasCcurent = this.splitter.hasCurrent;

                    this.parent.IsComplete = this.parent.currentSize > this.splitter.maxSize;

                    if (this.parent.IsComplete)
                    {
                        return false;
                    }

                    if (hasCcurent)
                    {
                        var result = this.enumerator.MoveNext();

                        this.splitter.lastItem = this.enumerator.Current;
                        this.splitter.hasCurrent = result;
                    }

                    return hasCcurent;
                }

                public void Reset()
                {
                    throw new System.NotImplementedException();
                }

                public T Current
                {
                    get { return this.currentItem; }
                }

                object IEnumerator.Current
                {
                    get { return this.Current; }
                }

                public void Dispose()
                {
                }
            }
        }
    }

1voto

frhack Points 2472

Une autre façon est d'utiliser Rx Opérateur de mémoire tampon

//using System.Linq;
//using System.Reactive.Linq;
//using System.Reactive.Threading.Tasks;

var observableBatches = anAnumerable.ToObservable().Buffer(size);

var batches = aList.ToObservable().Buffer(size).ToList().ToTask().GetAwaiter().GetResult();

1voto

frhack Points 2472

Juste une autre mise en œuvre d'une ligne. Cela fonctionne même avec une liste vide, dans ce cas vous obtenez une collection de lots de taille nulle.

var aList = Enumerable.Range(1, 100).ToList(); //a given list
var size = 9; //the wanted batch size
//number of batches are: (aList.Count() + size - 1) / size;

var batches = Enumerable.Range(0, (aList.Count() + size - 1) / size).Select(i => aList.GetRange( i * size, Math.Min(size, aList.Count() - i * size)));

Assert.True(batches.Count() == 12);
Assert.AreEqual(batches.ToList().ElementAt(0), new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 });
Assert.AreEqual(batches.ToList().ElementAt(1), new List<int>() { 10, 11, 12, 13, 14, 15, 16, 17, 18 });
Assert.AreEqual(batches.ToList().ElementAt(11), new List<int>() { 100 });

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X