164 votes

Spécification de la largeur de l'impression pour maintenir la précision de la valeur en virgule flottante.

Y a-t-il un printf qui peut être appliqué à un spécificateur à virgule flottante qui formaterait automatiquement la sortie au nombre nécessaire de caractères. chiffres significatifs de telle sorte que lors de la réinscription de la chaîne de caractères, la valeur en virgule flottante d'origine est acquise ?

Par exemple, supposons que j'imprime un float à une précision de 2 décimales :

float foobar = 0.9375;
printf("%.2f", foobar);    // prints out 0.94

Quand je scanne la sortie 0.94 je n'ai aucune garantie conforme aux normes que j'obtiendrai l'original. 0.9375 valeur à virgule flottante (dans cet exemple, je ne le ferai probablement pas).

J'aimerais pouvoir dire printf pour imprimer automatiquement la valeur à virgule flottante au nombre nécessaire de chiffres significatifs afin de s'assurer qu'il peut être scanné pour retrouver la valeur originale transmise à printf .

Je pourrais utiliser certaines des macros dans float.h a dériver la largeur maximale à passer à printf mais existe-t-il déjà un spécificateur permettant d'imprimer automatiquement le nombre nécessaire d'exemplaires d'une carte de crédit ? chiffres significatifs -- ou au moins à la largeur maximale ?

7voto

Diomidis Spinellis Points 8417

Je fais une petite expérience pour vérifier que l'impression avec DBL_DECIMAL_DIG préserve en effet exactement la représentation binaire du nombre. Il s'est avéré que pour les compilateurs et les bibliothèques C que j'ai essayés, DBL_DECIMAL_DIG est effectivement le nombre de chiffres requis, et l'impression avec ne serait-ce qu'un chiffre de moins crée un problème important.

#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

union {
    short s[4];
    double d;
} u;

void
test(int digits)
{
    int i, j;
    char buff[40];
    double d2;
    int n, num_equal, bin_equal;

    srand(17);
    n = num_equal = bin_equal = 0;
    for (i = 0; i < 1000000; i++) {
        for (j = 0; j < 4; j++)
            u.s[j] = (rand() << 8) ^ rand();
        if (isnan(u.d))
            continue;
        n++;
        sprintf(buff, "%.*g", digits, u.d);
        sscanf(buff, "%lg", &d2);
        if (u.d == d2)
            num_equal++;
        if (memcmp(&u.d, &d2, sizeof(double)) == 0)
            bin_equal++;
    }
    printf("Tested %d values with %d digits: %d found numericaly equal, %d found binary equal\n", n, digits, num_equal, bin_equal);
}

int
main()
{
    test(DBL_DECIMAL_DIG);
    test(DBL_DECIMAL_DIG - 1);
    return 0;
}

Je l'exécute avec le compilateur C de Microsoft 19.00.24215.1 et gcc version 7.4.0 20170516 (Debian 6.3.0-18+deb9u1). L'utilisation d'un chiffre décimal de moins divise par deux le nombre de nombres qui se comparent de manière exactement égale. (J'ai également vérifié que rand() tel qu'il est utilisé produit en effet environ un million de nombres différents). Voici les résultats détaillés.

Microsoft C

Tested 999507 values with 17 digits: 999507 found numericaly equal, 999507 found binary equal
Tested 999507 values with 16 digits: 545389 found numericaly equal, 545389 found binary equal

CCG

Tested 999485 values with 17 digits: 999485 found numericaly equal, 999485 found binary equal
Tested 999485 values with 16 digits: 545402 found numericaly equal, 545402 found binary equal

7voto

Stéphane Mottelet Points 1860

A ma connaissance, il existe un algorithme bien diffusé permettant de la sortie au nombre nécessaire de chiffres significatifs, de sorte que lors de la réintroduction de la chaîne, la valeur en virgule flottante d'origine est acquise. en dtoa.c écrit par David Gay, qui est disponible aquí sur Netlib (voir également le document associé papier ). Ce code est utilisé par exemple dans Python, MySQL, Scilab, et bien d'autres.

6voto

Greg A. Woods Points 683

Dans l'un de mes commentaires à une réponse, je me plaignais que je voulais depuis longtemps trouver un moyen d'imprimer tous les chiffres significatifs d'une valeur à virgule flottante sous forme décimale, de la même manière que la question le demande. Je me suis finalement assis et je l'ai écrit. Ce n'est pas tout à fait parfait, et c'est un code de démonstration qui imprime des informations supplémentaires, mais il fonctionne principalement pour mes tests. N'hésitez pas à me faire savoir si vous (c'est-à-dire n'importe qui) souhaitez obtenir une copie de l'ensemble du programme wrapper qui le pilote pour les tests.

static unsigned int
ilog10(uintmax_t v);

/*
 * Note:  As presented this demo code prints a whole line including information
 * about how the form was arrived with, as well as in certain cases a couple of
 * interesting details about the number, such as the number of decimal places,
 * and possibley the magnitude of the value and the number of significant
 * digits.
 */
void
print_decimal(double d)
{
        size_t sigdig;
        int dplaces;
        double flintmax;

        /*
         * If we really want to see a plain decimal presentation with all of
         * the possible significant digits of precision for a floating point
         * number, then we must calculate the correct number of decimal places
         * to show with "%.*f" as follows.
         *
         * This is in lieu of always using either full on scientific notation
         * with "%e" (where the presentation is always in decimal format so we
         * can directly print the maximum number of significant digits
         * supported by the representation, taking into acount the one digit
         * represented by by the leading digit)
         *
         *        printf("%1.*e", DBL_DECIMAL_DIG - 1, d)
         *
         * or using the built-in human-friendly formatting with "%g" (where a
         * '*' parameter is used as the number of significant digits to print
         * and so we can just print exactly the maximum number supported by the
         * representation)
         *
         *         printf("%.*g", DBL_DECIMAL_DIG, d)
         *
         *
         * N.B.:  If we want the printed result to again survive a round-trip
         * conversion to binary and back, and to be rounded to a human-friendly
         * number, then we can only print DBL_DIG significant digits (instead
         * of the larger DBL_DECIMAL_DIG digits).
         *
         * Note:  "flintmax" here refers to the largest consecutive integer
         * that can be safely stored in a floating point variable without
         * losing precision.
         */
#ifdef PRINT_ROUND_TRIP_SAFE
# ifdef DBL_DIG
        sigdig = DBL_DIG;
# else
        sigdig = ilog10(uipow(FLT_RADIX, DBL_MANT_DIG - 1));
# endif
#else
# ifdef DBL_DECIMAL_DIG
        sigdig = DBL_DECIMAL_DIG;
# else
        sigdig = (size_t) lrint(ceil(DBL_MANT_DIG * log10((double) FLT_RADIX))) + 1;
# endif
#endif
        flintmax = pow((double) FLT_RADIX, (double) DBL_MANT_DIG); /* xxx use uipow() */
        if (d == 0.0) {
                printf("z = %.*s\n", (int) sigdig + 1, "0.000000000000000000000"); /* 21 */
        } else if (fabs(d) >= 0.1 &&
                   fabs(d) <= flintmax) {
                dplaces = (int) (sigdig - (size_t) lrint(ceil(log10(ceil(fabs(d))))));
                if (dplaces < 0) {
                        /* XXX this is likely never less than -1 */
                        /*
                         * XXX the last digit is not significant!!! XXX
                         *
                         * This should also be printed with sprintf() and edited...
                         */
                        printf("R = %.0f [%d too many significant digits!!!, zero decimal places]\n", d, abs(dplaces));
                } else if (dplaces == 0) {
                        /*
                         * The decimal fraction here is not significant and
                         * should always be zero  (XXX I've never seen this)
                         */
                        printf("R = %.0f [zero decimal places]\n", d);
                } else {
                        if (fabs(d) == 1.0) {
                                /*
                                 * This is a special case where the calculation
                                 * is off by one because log10(1.0) is 0, but
                                 * we still have the leading '1' whole digit to
                                 * count as a significant digit.
                                 */
#if 0
                                printf("ceil(1.0) = %f, log10(ceil(1.0)) = %f, ceil(log10(ceil(1.0))) = %f\n",
                                       ceil(fabs(d)), log10(ceil(fabs(d))), ceil(log10(ceil(fabs(d)))));
#endif
                                dplaces--;
                        }
                        /* this is really the "useful" range of %f */
                        printf("r = %.*f [%d decimal places]\n", dplaces, d, dplaces);
                }
        } else {
                if (fabs(d) < 1.0) {
                        int lz;

                        lz = abs((int) lrint(floor(log10(fabs(d)))));
                        /* i.e. add # of leading zeros to the precision */
                        dplaces = (int) sigdig - 1 + lz;
                        printf("f = %.*f [%d decimal places]\n", dplaces, d, dplaces);
                } else {                /* d > flintmax */
                        size_t n;
                        size_t i;
                        char *df;

                        /*
                         * hmmmm...  the easy way to suppress the "invalid",
                         * i.e. non-significant digits is to do a string
                         * replacement of all dgits after the first
                         * DBL_DECIMAL_DIG to convert them to zeros, and to
                         * round the least significant digit.
                         */
                        df = malloc((size_t) 1);
                        n = (size_t) snprintf(df, (size_t) 1, "%.1f", d);
                        n++;                /* for the NUL */
                        df = realloc(df, n);
                        (void) snprintf(df, n, "%.1f", d);
                        if ((n - 2) > sigdig) {
                                /*
                                 * XXX rounding the integer part here is "hard"
                                 * -- we would have to convert the digits up to
                                 * this point back into a binary format and
                                 * round that value appropriately in order to
                                 * do it correctly.
                                 */
                                if (df[sigdig] >= '5' && df[sigdig] <= '9') {
                                        if (df[sigdig - 1] == '9') {
                                                /*
                                                 * xxx fixing this is left as
                                                 * an exercise to the reader!
                                                 */
                                                printf("F = *** failed to round integer part at the least significant digit!!! ***\n");
                                                free(df);
                                                return;
                                        } else {
                                                df[sigdig - 1]++;
                                        }
                                }
                                for (i = sigdig; df[i] != '.'; i++) {
                                        df[i] = '0';
                                }
                        } else {
                                i = n - 1; /* less the NUL */
                                if (isnan(d) || isinf(d)) {
                                        sigdig = 0; /* "nan" or "inf" */
                                }
                        }
                        printf("F = %.*s. [0 decimal places, %lu digits, %lu digits significant]\n",
                               (int) i, df, (unsigned long int) i, (unsigned long int) sigdig);
                        free(df);
                }
        }

        return;
}

static unsigned int
msb(uintmax_t v)
{
        unsigned int mb = 0;

        while (v >>= 1) { /* unroll for more speed...  (see ilog2()) */
                mb++;
        }

        return mb;
}

static unsigned int
ilog10(uintmax_t v)
{
        unsigned int r;
        static unsigned long long int const PowersOf10[] =
                { 1LLU, 10LLU, 100LLU, 1000LLU, 10000LLU, 100000LLU, 1000000LLU,
                  10000000LLU, 100000000LLU, 1000000000LLU, 10000000000LLU,
                  100000000000LLU, 1000000000000LLU, 10000000000000LLU,
                  100000000000000LLU, 1000000000000000LLU, 10000000000000000LLU,
                  100000000000000000LLU, 1000000000000000000LLU,
                  10000000000000000000LLU };

        if (!v) {
                return ~0U;
        }
        /*
         * By the relationship "log10(v) = log2(v) / log2(10)", we need to
         * multiply "log2(v)" by "1 / log2(10)", which is approximately
         * 1233/4096, or (1233, followed by a right shift of 12).
         *
         * Finally, since the result is only an approximation that may be off
         * by one, the exact value is found by subtracting "v < PowersOf10[r]"
         * from the result.
         */
        r = ((msb(v) * 1233) >> 12) + 1;

        return r - (v < PowersOf10[r]);
}

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X