Pour les grands nombres, vous ne pouvez pas simplement vérifier naïvement si le nombre candidat N n'est divisible par aucun des nombres inférieurs à sqrt(N). Il existe des tests beaucoup plus évolutifs, tels que la méthode Test de primalité de Miller-Rabin . Vous trouverez ci-dessous la mise en œuvre en python :
def is_prime(x):
"""Fast implementation fo Miller-Rabin primality test, guaranteed to be correct."""
import math
def get_sd(x):
"""Returns (s: int, d: int) for which x = d*2^s """
if not x: return 0, 0
s = 0
while 1:
if x % 2 == 0:
x /= 2
s += 1
else:
return s, x
if x <= 2:
return x == 2
# x - 1 = d*2^s
s, d = get_sd(x - 1)
if not s:
return False # divisible by 2!
log2x = int(math.log(x) / math.log(2)) + 1
# As long as Riemann hypothesis holds true, it is impossible
# that all the numbers below this threshold are strong liars.
# Hence the number is guaranteed to be a prime if no contradiction is found.
threshold = min(x, 2*log2x*log2x+1)
for a in range(2, threshold):
# From Fermat's little theorem if x is a prime then a^(x-1) % x == 1
# Hence the below must hold true if x is indeed a prime:
if pow(a, d, x) != 1:
for r in range(0, s):
if -pow(a, d*2**r, x) % x == 1:
break
else:
# Contradicts Fermat's little theorem, hence not a prime.
return False
# No contradiction found, hence x must be a prime.
return True
Vous pouvez l'utiliser pour trouver d'énormes nombres premiers :
x = 10000000000000000000000000000000000000000000000000000000000000000000000000000
for e in range(1000):
if is_prime(x + e):
print('%d is a prime!' % (x + e))
break
# 10000000000000000000000000000000000000000000000000000000000000000000000000133 is a prime!
Si vous testez des nombres entiers aléatoires, vous voudrez probablement tester d'abord si le nombre candidat est divisible par l'un des nombres premiers plus petits que, par exemple, 1000, avant d'appeler Miller-Rabin. Cela vous aidera à filtrer les nombres non premiers évidents tels que 10444344345.