642 votes

Algorithme permettant de retourner toutes les combinaisons de k éléments parmi n

Je veux écrire une fonction qui prend un tableau de lettres comme argument et un nombre de ces lettres à sélectionner.

Disons que vous fournissez un tableau de 8 lettres et que vous voulez en sélectionner 3. Alors vous devriez obtenir :

8! / ((8 - 3)! * 3!) = 56

Des tableaux (ou mots) en retour composés de 3 lettres chacun.

4 votes

Une préférence pour un langage de programmation ?

9 votes

Comment voulez-vous traiter les lettres en double ?

0 votes

Pas de préférence de langage, je vais le coder en ruby mais une idée générale des algorithmes à utiliser serait bien. Deux lettres de même valeur peuvent exister mais pas la même lettre deux fois.

1voto

Sarthak Gupta Points 352

Pour ce faire, nous pouvons utiliser le concept de bits. Supposons que nous ayons une chaîne de caractères "abc" et que nous voulions avoir toutes les combinaisons d'éléments de longueur 2 (c'est-à-dire "ab", "ac", "bc").

On peut trouver les bits de l'ensemble dans les nombres allant de 1 à 2^n (exclusif). Ici, de 1 à 7, et partout où nous avons des bits définis = 2, nous pouvons imprimer la valeur correspondante de la chaîne.

par exemple :

  • 1 - 001
  • 2 - 010
  • 3 - 011 -> print ab (str[0] , str[1])
  • 4 - 100
  • 5 - 101 -> print ac (str[0] , str[2])
  • 6 - 110 -> print ab (str[1] , str[2])
  • 7 - 111.

Exemple de code :

public class StringCombinationK {   
    static void combk(String s , int k){
        int n = s.length();
        int num = 1<<n;
        int j=0;
        int count=0;

        for(int i=0;i<num;i++){
            if (countSet(i)==k){
                setBits(i,j,s);
                count++;
                System.out.println();
            }
        }

        System.out.println(count);
    }

    static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
        if(i==0){
            return;
        }

        if(i%2==1){
            System.out.print(s.charAt(j));                  
        }

        setBits(i/2,j+1,s);
    }

    static int countSet(int i){ //count number of set bits
        if( i==0){
            return 0;
        }

        return (i%2==0? 0:1) + countSet(i/2);
    }

    public static void main(String[] arhs){
        String s = "abcdefgh";
        int k=3;
        combk(s,k);
    }
}

1voto

Paulo Mendes Points 513

Voici une approche Lisp utilisant une macro. Elle fonctionne en Common Lisp et devrait fonctionner dans d'autres dialectes Lisp.

Le code ci-dessous crée 'n' boucles imbriquées et exécute un morceau de code arbitraire (stocké dans le répertoire de l'utilisateur). body ) pour chaque combinaison de 'n' éléments de la liste lst . La variable var pointe vers une liste contenant les variables utilisées pour les boucles.

(defmacro do-combinations ((var lst num) &body body)
  (loop with syms = (loop repeat num collect (gensym))
        for i on syms
        for k = `(loop for ,(car i) on (cdr ,(cadr i))
                         do (let ((,var (list ,@(reverse syms)))) (progn ,@body)))
                then `(loop for ,(car i) on ,(if (cadr i) `(cdr ,(cadr i)) lst) do ,k)
        finally (return k)))

Voyons voir...

(macroexpand-1 '(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p))))

(LOOP FOR #:G3217 ON '(1 2 3 4 5 6 7) DO
 (LOOP FOR #:G3216 ON (CDR #:G3217) DO
  (LOOP FOR #:G3215 ON (CDR #:G3216) DO
   (LOOP FOR #:G3214 ON (CDR #:G3215) DO
    (LET ((P (LIST #:G3217 #:G3216 #:G3215 #:G3214)))
     (PROGN (PPRINT (MAPCAR #'CAR P))))))))

(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p)))

(1 2 3 4)
(1 2 3 5)
(1 2 3 6)
...

Comme les combinaisons ne sont pas stockées par défaut, le stockage est réduit au minimum. La possibilité de choisir la body au lieu de stocker tous les résultats, offre également une plus grande flexibilité.

1voto

luochen1990 Points 1323

Le code Haskell suivant calcule le nombre de combinaisons et combinaisons en même temps et grâce à la paresse de Haskell, vous pouvez obtenir une partie d'entre eux sans calculer l'autre.

import Data.Semigroup
import Data.Monoid

data Comb = MkComb {count :: Int, combinations :: [[Int]]} deriving (Show, Eq, Ord)

instance Semigroup Comb where
    (MkComb c1 cs1) <> (MkComb c2 cs2) = MkComb (c1 + c2) (cs1 ++ cs2)

instance Monoid Comb where
    mempty = MkComb 0 []

addElem :: Comb -> Int -> Comb
addElem (MkComb c cs) x = MkComb c (map (x :) cs)

comb :: Int -> Int -> Comb
comb n k | n < 0 || k < 0 = error "error in `comb n k`, n and k should be natural number"
comb n k | k == 0 || k == n = MkComb 1 [(take k [k-1,k-2..0])]
comb n k | n < k = mempty
comb n k = comb (n-1) k <> (comb (n-1) (k-1) `addElem` (n-1))

Ça marche comme ça :

*Main> comb 0 1
MkComb {count = 0, combinations = []}

*Main> comb 0 0
MkComb {count = 1, combinations = [[]]}

*Main> comb 1 1
MkComb {count = 1, combinations = [[0]]}

*Main> comb 4 2
MkComb {count = 6, combinations = [[1,0],[2,0],[2,1],[3,0],[3,1],[3,2]]}

*Main> count (comb 10 5)
252

0voto

esiegel Points 897

En Python comme Andrea Ambu, mais pas en dur pour choisir trois.

def combinations(list, k):
    """Choose combinations of list, choosing k elements(no repeats)"""
    if len(list) < k:
        return []
    else:
        seq = [i for i in range(k)]
        while seq:
            print [list[index] for index in seq]
            seq = get_next_combination(len(list), k, seq)

def get_next_combination(num_elements, k, seq):
        index_to_move = find_index_to_move(num_elements, seq)
        if index_to_move == None:
            return None
        else:
            seq[index_to_move] += 1

            #for every element past this sequence, move it down
            for i, elem in enumerate(seq[(index_to_move+1):]):
                seq[i + 1 + index_to_move] = seq[index_to_move] + i + 1

            return seq

def find_index_to_move(num_elements, seq):
        """Tells which index should be moved"""
        for rev_index, elem in enumerate(reversed(seq)):
            if elem < (num_elements - rev_index - 1):
                return len(seq) - rev_index - 1
        return None

0voto

mpounsett Points 381

En Python, en profitant de la récursion et du fait que tout est fait par référence. Cela prendra beaucoup de mémoire pour les très grands ensembles, mais a l'avantage que l'ensemble initial peut être un objet complexe. Il ne trouvera que des combinaisons uniques.

import copy

def find_combinations( length, set, combinations = None, candidate = None ):
    # recursive function to calculate all unique combinations of unique values
    # from [set], given combinations of [length].  The result is populated
    # into the 'combinations' list.
    #
    if combinations == None:
        combinations = []
    if candidate == None:
        candidate = []

    for item in set:
        if item in candidate:
            # this item already appears in the current combination somewhere.
            # skip it
            continue

        attempt = copy.deepcopy(candidate)
        attempt.append(item)
        # sorting the subset is what gives us completely unique combinations,
        # so that [1, 2, 3] and [1, 3, 2] will be treated as equals
        attempt.sort()

        if len(attempt) < length:
            # the current attempt at finding a new combination is still too
            # short, so add another item to the end of the set
            # yay recursion!
            find_combinations( length, set, combinations, attempt )
        else:
            # the current combination attempt is the right length.  If it
            # already appears in the list of found combinations then we'll
            # skip it.
            if attempt in combinations:
                continue
            else:
                # otherwise, we append it to the list of found combinations
                # and move on.
                combinations.append(attempt)
                continue
    return len(combinations)

Vous l'utilisez de cette façon. Le passage de 'resultat' est optionnel, donc vous pourriez l'utiliser pour obtenir le nombre de combinaisons possibles... bien que ce serait vraiment inefficace (il est préférable de le faire par calcul).

size = 3
set = [1, 2, 3, 4, 5]
result = []

num = find_combinations( size, set, result ) 
print "size %d results in %d sets" % (size, num)
print "result: %s" % (result,)

Vous devriez obtenir le résultat suivant à partir de ces données de test :

size 3 results in 10 sets
result: [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

Et ça marchera tout aussi bien si votre plateau ressemble à ça :

set = [
    [ 'vanilla', 'cupcake' ],
    [ 'chocolate', 'pudding' ],
    [ 'vanilla', 'pudding' ],
    [ 'chocolate', 'cookie' ],
    [ 'mint', 'cookie' ]
]

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X