60 votes

Extension de python - swig, pas swig ou cython

J'ai trouvé le goulot d'étranglement dans mon code python, jouait avec psycho etc. Alors décidé d'écrire un c/c++ extension pour la performance.

Avec l'aide de swig vous presque n'avez pas à vous préoccuper des arguments etc. Tout fonctionne très bien.

Maintenant, ma question: swig crée un assez grand py-fichier qui fait beaucoup de "vérifications" et "PySwigObject' avant d'appeler le réel .pyd ou .donc le code.

Quelqu'un d'entre vous avez de l'expérience s'il y a certains plus de performance à gagner si vous inscrire à la main ce fichier ou laissez rasade de le faire.

59voto

ascobol Points 2324

Vous devriez envisager de Boost.Python si vous ne prévoyez pas de générer des liaisons pour d'autres langues, avec swig.

Si vous avez beaucoup de fonctions et de classes à lier, Py++ est un grand outil qui génère automatiquement le code nécessaire pour faire les liaisons.

Pybindgen peut également être une option, mais c'est un nouveau projet et moins complète que Boost.Python.


Edit:

Peut-être que j'ai besoin d'être plus explicite sur les avantages et les inconvénients.

  • Gorgée:

    pro: vous pouvez générer des liaisons pour de nombreux langages de script.

    inconvénients: je n'aime pas la façon dont l'analyseur fonctionne. Je ne sais pas si le fait quelques progrès, mais il y a deux ans l'analyseur C++ était assez limité. La plupart du temps, j'ai dû copier/coller de mon .h-têtes ajouter quelques % personnages et de donner des conseils supplémentaires à la rasade de l'analyseur.

    J'ai également été nécessaires pour traiter avec le Python, C-API de temps en temps (pas si) compliqué conversions de type.

    Je ne suis pas en utilisant plus.

  • Coup de pouce.Python:

    pro: C'est un très complète de la bibliothèque. Il permet de faire presque tout ce qui est possible avec le C-API, mais en C++. Je n'ai jamais eu à écrire des C-code de l'API avec cette bibliothèque. Je n'ai jamais rencontré de bug dû à la bibliothèque. Code pour les liaisons soit fonctionne comme un charme ou de refuser de compiler.

    C'est probablement l'une des meilleures solutions actuellement disponibles si vous avez déjà quelques de la bibliothèque C++ pour lier. Mais si vous avez seulement une petite fonction C à réécrire, je serais probablement essayer avec Cython.

    inconvénients: si vous n'avez pas de pré-compilation de Boost.Bibliothèque Python vous allez utiliser Bjam (trier de faire de remplacement). J'ai vraiment la haine de Bjam et sa syntaxe.

    Les bibliothèques Python créé avec B. P ont tendance à devenir obèses. Il prend également beaucoup de temps à compiler.

  • Py++ (supprimé): c'est coup de pouce.Python facile. Py++ utilise un analyseur C++ pour lire le code, et ensuite génère de Boost.Le code Python automatiquement. Vous disposez également d'un grand soutien de son auteur (non, ce n'est pas moi ;-) ).

    inconvénients: seulement les problèmes en raison de coup de pouce.Python lui-même. Mise à jour: à partir de 2014, ce projet semble maintenant abandonnées.

  • Pybindgen:

    Il génère du code portant sur la C-API. Vous pouvez décrire les fonctions et les classes dans un fichier Python, ou laissez Pybindgen lire vos en-têtes et de générer des liaisons automatiquement (pour cela, il utilise pygccxml, une bibliothèque python écrit par l'auteur de Py++).

    inconvénients: c'est un projet jeune, avec une petite équipe de coup de pouce.Python. Il y a encore quelques limitations: vous ne pouvez pas utiliser l'héritage multiple pour vos classes C++, les Rappels (pas automatiquement, en fonction de rappel personnalisée de la manipulation de code peut être écrit, tout de même). Traduction de Python exceptions à C.

    Il est certainement en valeur un regard.

  • Un nouveau: Sur 2009/01/20 l'auteur de Py++ a annoncé un nouveau paquet pour l'interfaçage code C/C++ avec python. Il est basé sur ctypes. Je ne l'ai pas essayé déjà, mais je vais le faire! Remarque: ce projet se penche discontiued, comme Py++.

  • CFFI: je ne connaissais pas l'existence de celui-ci jusqu'à très récemment, donc pour l'instant je ne peux pas donner mon avis. Il semble que vous pouvez définir des fonctions en C, en Python chaînes et de les appeler directement à partir du même module Python.

  • Cython: C'est la méthode que je suis en train de l'utiliser dans mes projets. Fondamentalement, vous écrivez du code dans le spécial .custode fichiers. Ces fichiers sont compilés (traduit) dans un code C qui à son tour sont compilées Disponible modules. Cython code peut ressembler à des Python (et en fait de la pure Python sont valides .custode Cython fichiers), mais vous pouvez également plus d'informations, comme les types de variables. Cette option permet de taper Cython pour générer plus vite C code. Code en Cython fichiers peuvent appeler à la fois pur Python fonctions, mais aussi en C et C++ fonctions (et aussi des méthodes C++).

    Il m'a fallu un certain temps pour réfléchir à Cython, que, dans le même appeler du code C et C++ la fonction, mélanger en Python et en C les variables, et ainsi de suite. Mais c'est un langage très puissant, avec un actif (en 2014) et de la communauté amicale.

27voto

user763305 Points 6123

SWIG 2.0.4 a introduit une nouvelle option -builtin qui améliore les performances. J'ai effectué des analyses comparatives à l'aide d'un exemple de programme qui effectue beaucoup d'appels rapides vers une extension C ++. J'ai construit l'extension avec boost.python, PyBindGen, SIP et SWIG avec et sans l'option -builtin. Voici les résultats (moyenne de 100 essais):

 SWIG with -builtin     2.67s
SIP                    2.70s
PyBindGen              2.74s
boost.python           3.07s
SWIG without -builtin  4.65s
 

SWIG avait l'habitude d'être le plus lent. Avec la nouvelle option -builtin, SWIG semble être le plus rapide.

26voto

Mapad Points 3033

Pour sûr, vous aurez toujours un gain de performances de faire cela à la main, mais le gain sera très faible par rapport à l'effort requis pour ce faire. Je n'ai pas de chiffre à vous donner mais je ne le recommande pas, car vous aurez besoin de maintenir l'interface à la main, et ce n'est pas une option si votre module est grande!

Vous avez fait la bonne chose à choisi d'utiliser un langage de script parce que vous avez voulu un rapide développement. De cette façon, vous avez évité le début de l'optimisation du syndrome, et maintenant vous voulez optimiser le goulot d'étranglement des pièces de, la grande! Mais si vous ne le C/python interface à la main, vous allez tomber dans le début de l'optimisation du syndrome de pour assurer.

Si vous voulez quelque chose avec moins de code de l'interface, vous pouvez penser à la création d'une dll à partir de votre code en C, et l'utilisation de la bibliothèque directement à partir de python avec cstruct.

Pensez également Cython si vous souhaitez utiliser uniquement code python dans votre programme.

16voto

nosklo Points 75862

Utiliser Cython est très bon. Vous pouvez écrire votre extension C avec une syntaxe semblable à celle de Python et la faire générer du code C. Plaque de cuisson inclus. Puisque vous avez déjà le code en python, vous devez apporter quelques modifications à votre code goulot d’étranglement et le code C sera généré à partir de celui-ci.

Exemple. hello.pyx :

 cdef int hello(int a, int b):
    return a + b
 

Cela génère 601 lignes de code standard:

 /* Generated by Cython 0.10.3 on Mon Jan 19 08:24:44 2009 */

#define PY_SSIZE_T_CLEAN
#include "Python.h"
#include "structmember.h"
#ifndef PY_LONG_LONG
  #define PY_LONG_LONG LONG_LONG
#endif
#ifndef DL_EXPORT
  #define DL_EXPORT(t) t
#endif
#if PY_VERSION_HEX < 0x02040000
  #define METH_COEXIST 0
#endif
#if PY_VERSION_HEX < 0x02050000
  typedef int Py_ssize_t;
  #define PY_SSIZE_T_MAX INT_MAX
  #define PY_SSIZE_T_MIN INT_MIN
  #define PyInt_FromSsize_t(z) PyInt_FromLong(z)
  #define PyInt_AsSsize_t(o)   PyInt_AsLong(o)
  #define PyNumber_Index(o)    PyNumber_Int(o)
  #define PyIndex_Check(o)     PyNumber_Check(o)
#endif
#if PY_VERSION_HEX < 0x02060000
  #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
  #define Py_TYPE(ob)   (((PyObject*)(ob))->ob_type)
  #define Py_SIZE(ob)   (((PyVarObject*)(ob))->ob_size)
  #define PyVarObject_HEAD_INIT(type, size) \
          PyObject_HEAD_INIT(type) size,
  #define PyType_Modified(t)

  typedef struct {
       void *buf;
       PyObject *obj;
       Py_ssize_t len;
       Py_ssize_t itemsize;
       int readonly;
       int ndim;
       char *format;
       Py_ssize_t *shape;
       Py_ssize_t *strides;
       Py_ssize_t *suboffsets;
       void *internal;
  } Py_buffer;

  #define PyBUF_SIMPLE 0
  #define PyBUF_WRITABLE 0x0001
  #define PyBUF_LOCK 0x0002
  #define PyBUF_FORMAT 0x0004
  #define PyBUF_ND 0x0008
  #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
  #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
  #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
  #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
  #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)

#endif
#if PY_MAJOR_VERSION < 3
  #define __Pyx_BUILTIN_MODULE_NAME "__builtin__"
#else
  #define __Pyx_BUILTIN_MODULE_NAME "builtins"
#endif
#if PY_MAJOR_VERSION >= 3
  #define Py_TPFLAGS_CHECKTYPES 0
  #define Py_TPFLAGS_HAVE_INDEX 0
#endif
#if (PY_VERSION_HEX < 0x02060000) || (PY_MAJOR_VERSION >= 3)
  #define Py_TPFLAGS_HAVE_NEWBUFFER 0
#endif
#if PY_MAJOR_VERSION >= 3
  #define PyBaseString_Type            PyUnicode_Type
  #define PyString_Type                PyBytes_Type
  #define PyInt_Type                   PyLong_Type
  #define PyInt_Check(op)              PyLong_Check(op)
  #define PyInt_CheckExact(op)         PyLong_CheckExact(op)
  #define PyInt_FromString             PyLong_FromString
  #define PyInt_FromUnicode            PyLong_FromUnicode
  #define PyInt_FromLong               PyLong_FromLong
  #define PyInt_FromSize_t             PyLong_FromSize_t
  #define PyInt_FromSsize_t            PyLong_FromSsize_t
  #define PyInt_AsLong                 PyLong_AsLong
  #define PyInt_AS_LONG                PyLong_AS_LONG
  #define PyInt_AsSsize_t              PyLong_AsSsize_t
  #define PyInt_AsUnsignedLongMask     PyLong_AsUnsignedLongMask
  #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask
  #define __Pyx_PyNumber_Divide(x,y)         PyNumber_TrueDivide(x,y)
#else
  #define __Pyx_PyNumber_Divide(x,y)         PyNumber_Divide(x,y)
  #define PyBytes_Type                 PyString_Type
#endif
#if PY_MAJOR_VERSION >= 3
  #define PyMethod_New(func, self, klass) PyInstanceMethod_New(func)
#endif
#if !defined(WIN32) && !defined(MS_WINDOWS)
  #ifndef __stdcall
    #define __stdcall
  #endif
  #ifndef __cdecl
    #define __cdecl
  #endif
#else
  #define _USE_MATH_DEFINES
#endif
#ifdef __cplusplus
#define __PYX_EXTERN_C extern "C"
#else
#define __PYX_EXTERN_C extern
#endif
#include <math.h>
#define __PYX_HAVE_API__helloworld

#ifdef __GNUC__
#define INLINE __inline__
#elif _WIN32
#define INLINE __inline
#else
#define INLINE 
#endif

typedef struct 
    {PyObject **p; char *s; long n; 
     char is_unicode; char intern; char is_identifier;} 
     __Pyx_StringTabEntry; /*proto*/

static int __pyx_skip_dispatch = 0;


/* Type Conversion Predeclarations */

#if PY_MAJOR_VERSION < 3
#define __Pyx_PyBytes_FromString PyString_FromString
#define __Pyx_PyBytes_AsString   PyString_AsString
#else
#define __Pyx_PyBytes_FromString PyBytes_FromString
#define __Pyx_PyBytes_AsString   PyBytes_AsString
#endif

#define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False))
static INLINE int __Pyx_PyObject_IsTrue(PyObject* x);
static INLINE PY_LONG_LONG __pyx_PyInt_AsLongLong(PyObject* x);
static INLINE unsigned PY_LONG_LONG __pyx_PyInt_AsUnsignedLongLong(PyObject* x);
static INLINE Py_ssize_t __pyx_PyIndex_AsSsize_t(PyObject* b);

#define __pyx_PyInt_AsLong(x) (PyInt_CheckExact(x) ? PyInt_AS_LONG(x) : PyInt_AsLong(x))
#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x))

static INLINE unsigned char __pyx_PyInt_unsigned_char(PyObject* x);
static INLINE unsigned short __pyx_PyInt_unsigned_short(PyObject* x);
static INLINE char __pyx_PyInt_char(PyObject* x);
static INLINE short __pyx_PyInt_short(PyObject* x);
static INLINE int __pyx_PyInt_int(PyObject* x);
static INLINE long __pyx_PyInt_long(PyObject* x);
static INLINE signed char __pyx_PyInt_signed_char(PyObject* x);
static INLINE signed short __pyx_PyInt_signed_short(PyObject* x);
static INLINE signed int __pyx_PyInt_signed_int(PyObject* x);
static INLINE signed long __pyx_PyInt_signed_long(PyObject* x);
static INLINE long double __pyx_PyInt_long_double(PyObject* x);
#ifdef __GNUC__
/* Test for GCC > 2.95 */
#if __GNUC__ > 2 ||               (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)) 
#define likely(x)   __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else /* __GNUC__ > 2 ... */
#define likely(x)   (x)
#define unlikely(x) (x)
#endif /* __GNUC__ > 2 ... */
#else /* __GNUC__ */
#define likely(x)   (x)
#define unlikely(x) (x)
#endif /* __GNUC__ */

static PyObject *__pyx_m;
static PyObject *__pyx_b;
static PyObject *__pyx_empty_tuple;
static int __pyx_lineno;
static int __pyx_clineno = 0;
static const char * __pyx_cfilenm= __FILE__;
static const char *__pyx_filename;
static const char **__pyx_f;

static void __Pyx_AddTraceback(const char *funcname); /*proto*/

/* Type declarations */
/* Module declarations from helloworld */

static int __pyx_f_10helloworld_hello(int, int); /*proto*/


/* Implementation of helloworld */

/* "/home/nosklo/devel/ctest/hello.pyx":1
 * cdef int hello(int a, int b):             # <<<<<<<<<<<<<<
 *     return a + b
 * 
 */

static  int __pyx_f_10helloworld_hello(int __pyx_v_a, int __pyx_v_b) {
  int __pyx_r;

  /* "/home/nosklo/devel/ctest/hello.pyx":2
 * cdef int hello(int a, int b):
 *     return a + b             # <<<<<<<<<<<<<<
 * 
 */
  __pyx_r = (__pyx_v_a + __pyx_v_b);
  goto __pyx_L0;

  __pyx_r = 0;
  __pyx_L0:;
  return __pyx_r;
}

static struct PyMethodDef __pyx_methods[] = {
  {0, 0, 0, 0}
};

static void __pyx_init_filenames(void); /*proto*/

#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef __pyx_moduledef = {
    PyModuleDef_HEAD_INIT,
    "helloworld",
    0, /* m_doc */
    -1, /* m_size */
    __pyx_methods /* m_methods */,
    NULL, /* m_reload */
    NULL, /* m_traverse */
    NULL, /* m_clear */
    NULL /* m_free */
};
#endif
static int __Pyx_InitCachedBuiltins(void) {
  return 0;
  return -1;
}

static int __Pyx_InitGlobals(void) {
  return 0;
  return -1;
}

#if PY_MAJOR_VERSION < 3
PyMODINIT_FUNC inithelloworld(void); /*proto*/
PyMODINIT_FUNC inithelloworld(void)
#else
PyMODINIT_FUNC PyInit_helloworld(void); /*proto*/
PyMODINIT_FUNC PyInit_helloworld(void)
#endif
{
  __pyx_empty_tuple = PyTuple_New(0); 
  if (unlikely(!__pyx_empty_tuple))
      {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; 
       __pyx_clineno = __LINE__; goto __pyx_L1_error;}
  /*--- Library function declarations ---*/
  __pyx_init_filenames();
  /*--- Initialize various global constants etc. ---*/
  if (unlikely(__Pyx_InitGlobals() < 0)) 
     {__pyx_filename = __pyx_f[0]; 
      __pyx_lineno = 1; 
      __pyx_clineno = __LINE__; 
      goto __pyx_L1_error;}
  /*--- Module creation code ---*/
  #if PY_MAJOR_VERSION < 3
  __pyx_m = Py_InitModule4("helloworld", __pyx_methods, 0, 0, PYTHON_API_VERSION);
  #else
  __pyx_m = PyModule_Create(&__pyx_moduledef);
  #endif
  if (!__pyx_m) 
     {__pyx_filename = __pyx_f[0]; 
      __pyx_lineno = 1; __pyx_clineno = __LINE__; 
      goto __pyx_L1_error;};
  #if PY_MAJOR_VERSION < 3
  Py_INCREF(__pyx_m);
  #endif
  __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME);
  if (!__pyx_b) 
     {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; 
      __pyx_clineno = __LINE__; goto __pyx_L1_error;};
  if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) 
      {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; 
       __pyx_clineno = __LINE__; goto __pyx_L1_error;};
  /*--- Builtin init code ---*/
  if (unlikely(__Pyx_InitCachedBuiltins() < 0)) 
      {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; 
       __pyx_clineno = __LINE__; goto __pyx_L1_error;}
  __pyx_skip_dispatch = 0;
  /*--- Global init code ---*/
  /*--- Function export code ---*/
  /*--- Type init code ---*/
  /*--- Type import code ---*/
  /*--- Function import code ---*/
  /*--- Execution code ---*/

  /* "/home/nosklo/devel/ctest/hello.pyx":1
 * cdef int hello(int a, int b):             # <<<<<<<<<<<<<<
 *     return a + b
 * 
 */
  #if PY_MAJOR_VERSION < 3
  return;
  #else
  return __pyx_m;
  #endif
  __pyx_L1_error:;
  __Pyx_AddTraceback("helloworld");
  #if PY_MAJOR_VERSION >= 3
  return NULL;
  #endif
}

static const char *__pyx_filenames[] = {
  "hello.pyx",
};

/* Runtime support code */

static void __pyx_init_filenames(void) {
  __pyx_f = __pyx_filenames;
}

#include "compile.h"
#include "frameobject.h"
#include "traceback.h"

static void __Pyx_AddTraceback(const char *funcname) {
    PyObject *py_srcfile = 0;
    PyObject *py_funcname = 0;
    PyObject *py_globals = 0;
    PyObject *empty_string = 0;
    PyCodeObject *py_code = 0;
    PyFrameObject *py_frame = 0;

    #if PY_MAJOR_VERSION < 3
    py_srcfile = PyString_FromString(__pyx_filename);
    #else
    py_srcfile = PyUnicode_FromString(__pyx_filename);
    #endif
    if (!py_srcfile) goto bad;
    if (__pyx_clineno) {
        #if PY_MAJOR_VERSION < 3
        py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, 
             __pyx_cfilenm, __pyx_clineno);
        #else
        py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, 
             __pyx_cfilenm, __pyx_clineno);
        #endif
    }
    else {
        #if PY_MAJOR_VERSION < 3
        py_funcname = PyString_FromString(funcname);
        #else
        py_funcname = PyUnicode_FromString(funcname);
        #endif
    }
    if (!py_funcname) goto bad;
    py_globals = PyModule_GetDict(__pyx_m);
    if (!py_globals) goto bad;
    #if PY_MAJOR_VERSION < 3
    empty_string = PyString_FromStringAndSize("", 0);
    #else
    empty_string = PyBytes_FromStringAndSize("", 0);
    #endif
    if (!empty_string) goto bad;
    py_code = PyCode_New(
        0,            /*int argcount,*/
        #if PY_MAJOR_VERSION >= 3
        0,            /*int kwonlyargcount,*/
        #endif
        0,            /*int nlocals,*/
        0,            /*int stacksize,*/
        0,            /*int flags,*/
        empty_string, /*PyObject *code,*/
        __pyx_empty_tuple,  /*PyObject *consts,*/
        __pyx_empty_tuple,  /*PyObject *names,*/
        __pyx_empty_tuple,  /*PyObject *varnames,*/
        __pyx_empty_tuple,  /*PyObject *freevars,*/
        __pyx_empty_tuple,  /*PyObject *cellvars,*/
        py_srcfile,   /*PyObject *filename,*/
        py_funcname,  /*PyObject *name,*/
        __pyx_lineno,   /*int firstlineno,*/
        empty_string  /*PyObject *lnotab*/
    );
    if (!py_code) goto bad;
    py_frame = PyFrame_New(
        PyThreadState_GET(), /*PyThreadState *tstate,*/
        py_code,             /*PyCodeObject *code,*/
        py_globals,          /*PyObject *globals,*/
        0                    /*PyObject *locals*/
    );
    if (!py_frame) goto bad;
    py_frame->f_lineno = __pyx_lineno;
    PyTraceBack_Here(py_frame);
bad:
    Py_XDECREF(py_srcfile);
    Py_XDECREF(py_funcname);
    Py_XDECREF(empty_string);
    Py_XDECREF(py_code);
    Py_XDECREF(py_frame);
}

/* Type Conversion Functions */

static INLINE Py_ssize_t __pyx_PyIndex_AsSsize_t(PyObject* b) {
  Py_ssize_t ival;
  PyObject* x = PyNumber_Index(b);
  if (!x) return -1;
  ival = PyInt_AsSsize_t(x);
  Py_DECREF(x);
  return ival;
}

static INLINE int __Pyx_PyObject_IsTrue(PyObject* x) {
   if (x == Py_True) return 1;
   else if (x == Py_False) return 0;
   else return PyObject_IsTrue(x);
}

static INLINE PY_LONG_LONG __pyx_PyInt_AsLongLong(PyObject* x) {
    if (PyInt_CheckExact(x)) {
        return PyInt_AS_LONG(x);
    }
    else if (PyLong_CheckExact(x)) {
        return PyLong_AsLongLong(x);
    }
    else {
        PY_LONG_LONG val;
        PyObject* tmp = PyNumber_Int(x); if (!tmp) return (PY_LONG_LONG)-1;
        val = __pyx_PyInt_AsLongLong(tmp);
        Py_DECREF(tmp);
        return val;
    }
}

static INLINE unsigned PY_LONG_LONG __pyx_PyInt_AsUnsignedLongLong(PyObject* x) {
    if (PyInt_CheckExact(x)) {
        long val = PyInt_AS_LONG(x);
        if (unlikely(val < 0)) {
            PyErr_SetString(PyExc_TypeError, "Negative assignment to unsigned type.");
            return (unsigned PY_LONG_LONG)-1;
        }
        return val;
    }
    else if (PyLong_CheckExact(x)) {
        return PyLong_AsUnsignedLongLong(x);
    }
    else {
        PY_LONG_LONG val;
        PyObject* tmp = PyNumber_Int(x); if (!tmp) return (PY_LONG_LONG)-1;
        val = __pyx_PyInt_AsUnsignedLongLong(tmp);
        Py_DECREF(tmp);
        return val;
    }
}


static INLINE unsigned char __pyx_PyInt_unsigned_char(PyObject* x) {
    if (sizeof(unsigned char) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        unsigned char val = (unsigned char)long_val;
        if (unlikely((val != long_val)  || (long_val < 0))) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to unsigned char");
            return (unsigned char)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE unsigned short __pyx_PyInt_unsigned_short(PyObject* x) {
    if (sizeof(unsigned short) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        unsigned short val = (unsigned short)long_val;
        if (unlikely((val != long_val)  || (long_val < 0))) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to unsigned short");
            return (unsigned short)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE char __pyx_PyInt_char(PyObject* x) {
    if (sizeof(char) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        char val = (char)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to char");
            return (char)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE short __pyx_PyInt_short(PyObject* x) {
    if (sizeof(short) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        short val = (short)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to short");
            return (short)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE int __pyx_PyInt_int(PyObject* x) {
    if (sizeof(int) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        int val = (int)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to int");
            return (int)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE long __pyx_PyInt_long(PyObject* x) {
    if (sizeof(long) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        long val = (long)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to long");
            return (long)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE signed char __pyx_PyInt_signed_char(PyObject* x) {
    if (sizeof(signed char) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        signed char val = (signed char)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to signed char");
            return (signed char)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE signed short __pyx_PyInt_signed_short(PyObject* x) {
    if (sizeof(signed short) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        signed short val = (signed short)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to signed short");
            return (signed short)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE signed int __pyx_PyInt_signed_int(PyObject* x) {
    if (sizeof(signed int) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        signed int val = (signed int)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to signed int");
            return (signed int)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE signed long __pyx_PyInt_signed_long(PyObject* x) {
    if (sizeof(signed long) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        signed long val = (signed long)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to signed long");
            return (signed long)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}

static INLINE long double __pyx_PyInt_long_double(PyObject* x) {
    if (sizeof(long double) < sizeof(long)) {
        long long_val = __pyx_PyInt_AsLong(x);
        long double val = (long double)long_val;
        if (unlikely((val != long_val) )) {
            PyErr_SetString(PyExc_OverflowError, "value too large to convert to long double");
            return (long double)-1;
        }
        return val;
    }
    else {
        return __pyx_PyInt_AsLong(x);
    }
}
 

7voto

schollii Points 51

Une observation: sur la Base de l'analyse comparative menée par le pybindgen les développeurs, il n'y a pas de différence significative entre les boost.python et swig. Je n'ai pas fait ma propre analyse comparative de vérifier comment une grande partie de cela dépend de la bonne utilisation de la poussée.la fonctionnalité python.

Notez également qu'il y a peut être une raison qui pybindgen semble être en général un peu plus rapide que rasade et boost.python: il peut ne pas produire le plus polyvalent, d'une liaison que les deux autres. Par exemple, la propagation d'exception, argument appel vérification de type, etc. Je n'ai pas eu l'occasion de les utiliser pybindgen encore, mais j'ai l'intention de.

Boost est en général assez gros paquet à installer, et le dernier que j'ai vu, vous ne pouvez pas installer boost python vous bien besoin de toute la bibliothèque Boost. Comme d'autres l'ont mentionné compilation sera lente en raison d'une utilisation de modèle de programmation, ce qui signifie aussi généralement assez mystérieux messages d'erreur au moment de la compilation.

Résumé: compte tenu de la facilité GORGÉE d'installation et d'utilisation, qu'il génère décent liaison qui est robuste et polyvalent, et que l'un fichier d'interface permet à votre DLL C++ est disponible à partir de plusieurs autres langues comme le LUA, C# et Java, je serais favorable sur coup de pouce.python. Mais à moins que vous vraiment besoin de support multi-langue, je voudrais jeter un oeil de près PyBindGen en raison de sa prétendue vitesse, et de prêter attention à la robustesse et la polyvalence de la liaison qu'il génère.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by: