La réponse de gahooa est correcte pour la question telle qu'elle est formulée dans l'en-tête, mais si les listes sont déjà au format numpy ou plus de dix, il sera BEAUCOUP plus rapide (3 ordres de grandeur) et plus lisible de faire une simple multiplication numpy comme suggéré par NPE. J'obtiens ces timings :
0.0049ms -> N = 4, a = [i for i in range(N)], c = [a*b for a,b in zip(a, b)]
0.0075ms -> N = 4, a = [i for i in range(N)], c = a * b
0.0167ms -> N = 4, a = np.arange(N), c = [a*b for a,b in zip(a, b)]
0.0013ms -> N = 4, a = np.arange(N), c = a * b
0.0171ms -> N = 40, a = [i for i in range(N)], c = [a*b for a,b in zip(a, b)]
0.0095ms -> N = 40, a = [i for i in range(N)], c = a * b
0.1077ms -> N = 40, a = np.arange(N), c = [a*b for a,b in zip(a, b)]
0.0013ms -> N = 40, a = np.arange(N), c = a * b
0.1485ms -> N = 400, a = [i for i in range(N)], c = [a*b for a,b in zip(a, b)]
0.0397ms -> N = 400, a = [i for i in range(N)], c = a * b
1.0348ms -> N = 400, a = np.arange(N), c = [a*b for a,b in zip(a, b)]
0.0020ms -> N = 400, a = np.arange(N), c = a * b
c'est-à-dire à partir du programme d'essai suivant.
import timeit
init = ['''
import numpy as np
N = {}
a = {}
b = np.linspace(0.0, 0.5, len(a))
'''.format(i, j) for i in [4, 40, 400]
for j in ['[i for i in range(N)]', 'np.arange(N)']]
func = ['''c = [a*b for a,b in zip(a, b)]''',
'''c = a * b''']
for i in init:
for f in func:
lines = i.split('\n')
print('{:6.4f}ms -> {}, {}, {}'.format(
timeit.timeit(f, setup=i, number=1000), lines[2], lines[3], f))