266 votes

Normaliser les colonnes de données dans R

J'ai un ensemble de données appelé spam qui contient 58 colonnes et environ 3500 lignes de données relatives aux messages de spam.

Je prévois d'effectuer une régression linéaire sur cet ensemble de données à l'avenir, mais j'aimerais effectuer un prétraitement au préalable et normaliser les colonnes pour qu'elles aient une moyenne nulle et une variance unitaire.

On m'a dit que le meilleur moyen d'y parvenir est d'utiliser R, donc je voudrais demander comment puis-je réaliser la normalisation avec R ? J'ai déjà chargé les données correctement et je cherche simplement des paquets ou des méthodes pour effectuer cette tâche.

-1voto

user1767316 Points 11

El normaliser du paquet BBMisc était l'outil qu'il me fallait, car il peut traiter les valeurs NA.

Voici comment l'utiliser :

Étant donné l'ensemble de données suivant,

    ASR_API     <- c("CV",  "F",    "IER",  "LS-c", "LS-o")
    Human       <- c(NA,    5.8,    12.7,   NA, NA)
    Google      <- c(23.2,  24.2,   16.6,   12.1,   28.8)
    GoogleCloud <- c(23.3,  26.3,   18.3,   12.3,   27.3)
    IBM     <- c(21.8,  47.6,   24.0,   9.8,    25.3)
    Microsoft   <- c(29.1,  28.1,   23.1,   18.8,   35.9)
    Speechmatics    <- c(19.1,  38.4,   21.4,   7.3,    19.4)
    Wit_ai      <- c(35.6,  54.2,   37.4,   19.2,   41.7)
    dt     <- data.table(ASR_API,Human, Google, GoogleCloud, IBM, Microsoft, Speechmatics, Wit_ai)
> dt
   ASR_API Human Google GoogleCloud  IBM Microsoft Speechmatics Wit_ai
1:      CV    NA   23.2        23.3 21.8      29.1         19.1   35.6
2:       F   5.8   24.2        26.3 47.6      28.1         38.4   54.2
3:     IER  12.7   16.6        18.3 24.0      23.1         21.4   37.4
4:    LS-c    NA   12.1        12.3  9.8      18.8          7.3   19.2
5:    LS-o    NA   28.8        27.3 25.3      35.9         19.4   41.7

Les valeurs normalisées peuvent être obtenues comme suit :

> dtn <- normalize(dt, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet")
> dtn
   ASR_API      Human     Google GoogleCloud         IBM  Microsoft Speechmatics      Wit_ai
1:      CV         NA  0.3361245   0.2893457 -0.28468670  0.3247336  -0.18127203 -0.16032655
2:       F -0.7071068  0.4875320   0.7715885  1.59862532  0.1700986   1.55068347  1.31594762
3:     IER  0.7071068 -0.6631646  -0.5143923 -0.12409420 -0.6030768   0.02512682 -0.01746131
4:    LS-c         NA -1.3444981  -1.4788780 -1.16064578 -1.2680075  -1.24018782 -1.46198764
5:    LS-o         NA  1.1840062   0.9323361 -0.02919864  1.3762521  -0.15435044  0.32382788

où la méthode calculée à la main ignore simplement les colmuns contenant des NAs :

> dt %>% mutate(normalizedHuman = (Human - mean(Human))/sd(Human)) %>% 
+ mutate(normalizedGoogle = (Google - mean(Google))/sd(Google)) %>% 
+ mutate(normalizedGoogleCloud = (GoogleCloud - mean(GoogleCloud))/sd(GoogleCloud)) %>% 
+ mutate(normalizedIBM = (IBM - mean(IBM))/sd(IBM)) %>% 
+ mutate(normalizedMicrosoft = (Microsoft - mean(Microsoft))/sd(Microsoft)) %>% 
+ mutate(normalizedSpeechmatics = (Speechmatics - mean(Speechmatics))/sd(Speechmatics)) %>% 
+ mutate(normalizedWit_ai = (Wit_ai - mean(Wit_ai))/sd(Wit_ai))
  ASR_API Human Google GoogleCloud  IBM Microsoft Speechmatics Wit_ai normalizedHuman normalizedGoogle
1      CV    NA   23.2        23.3 21.8      29.1         19.1   35.6              NA        0.3361245
2       F   5.8   24.2        26.3 47.6      28.1         38.4   54.2              NA        0.4875320
3     IER  12.7   16.6        18.3 24.0      23.1         21.4   37.4              NA       -0.6631646
4    LS-c    NA   12.1        12.3  9.8      18.8          7.3   19.2              NA       -1.3444981
5    LS-o    NA   28.8        27.3 25.3      35.9         19.4   41.7              NA        1.1840062
  normalizedGoogleCloud normalizedIBM normalizedMicrosoft normalizedSpeechmatics normalizedWit_ai
1             0.2893457   -0.28468670           0.3247336            -0.18127203      -0.16032655
2             0.7715885    1.59862532           0.1700986             1.55068347       1.31594762
3            -0.5143923   -0.12409420          -0.6030768             0.02512682      -0.01746131
4            -1.4788780   -1.16064578          -1.2680075            -1.24018782      -1.46198764
5             0.9323361   -0.02919864           1.3762521            -0.15435044       0.32382788

(normalizedHuman est une liste de NAs ...)

en ce qui concerne la sélection de colonnes spécifiques pour le calcul, une méthode générique peut être employée comme celle-ci :

data_vars <- df_full %>% dplyr::select(-ASR_API,-otherVarNotToBeUsed)
meta_vars <- df_full %>% dplyr::select(ASR_API,otherVarNotToBeUsed)
data_varsn <- normalize(data_vars, method = "standardize", range = c(0, 1), margin = 1L, on.constant = "quiet")
dtn <- cbind(meta_vars,data_varsn)

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X