import numpy as np
def using_tile_and_stride():
arr = np.tile(np.array([10,20,30,0,0,0], dtype='float'), (4,1))
row_stride, col_stride = arr.strides
arr.strides = row_stride-col_stride, col_stride
return arr
In [108]: using_tile_and_stride()
Out[108]:
array([[ 10., 20., 30., 0., 0., 0.],
[ 0., 10., 20., 30., 0., 0.],
[ 0., 0., 10., 20., 30., 0.],
[ 0., 0., 0., 10., 20., 30.]])
D'autres solutions, plus lentes, existent :
import numpy as np
import numpy.lib.stride_tricks as stride
def using_put():
arr = np.zeros((4,6), dtype='float')
a, b, c = 10, 20, 30
nrows, ncols = arr.shape
ind = (np.arange(3) + np.arange(0,(ncols+1)*nrows,ncols+1)[:,np.newaxis]).ravel()
arr.put(ind, [a, b, c])
return arr
def using_strides():
return np.flipud(stride.as_strided(
np.array([0, 0, 0, 10, 20, 30, 0, 0, 0], dtype='float'),
shape=(4, 6), strides = (8, 8)))
Si vous utilisez using_tile_and_stride
Notez que le tableau n'est approprié que pour la lecture seule. Sinon, si vous essayez de modifier le tableau, vous pourriez être surpris de voir que plusieurs emplacements du tableau changent simultanément :
In [32]: arr = using_tile_and_stride()
In [33]: arr[0, -1] = 100
In [34]: arr
Out[34]:
array([[ 10., 20., 30., 0., 100.],
[ 100., 10., 20., 30., 0.],
[ 0., 0., 10., 20., 30.],
[ 30., 0., 0., 10., 20.]])
Vous pouvez contourner ce problème en renvoyant np.ascontiguousarray(arr)
au lieu de simplement arr
mais alors using_tile_and_stride
serait plus lent que using_put
. Donc si vous avez l'intention de modifier le tableau, using_put
serait un meilleur choix.