Une alternative consiste à faire une estimation robuste de l'écart-type (en supposant des statistiques gaussiennes). En consultant les calculateurs en ligne, je vois que le percentile de 90% correspond à 1,2815σ et celui de 95% à 1,645σ ( http://vassarstats.net/tabs.html?#z )
Un exemple simple :
import numpy as np
# Create some random numbers
x = np.random.normal(5, 2, 1000)
# Calculate the statistics
print("Mean= ", np.mean(x))
print("Median= ", np.median(x))
print("Max/Min=", x.max(), " ", x.min())
print("StdDev=", np.std(x))
print("90th Percentile", np.percentile(x, 90))
# Add a few large points
x[10] += 1000
x[20] += 2000
x[30] += 1500
# Recalculate the statistics
print()
print("Mean= ", np.mean(x))
print("Median= ", np.median(x))
print("Max/Min=", x.max(), " ", x.min())
print("StdDev=", np.std(x))
print("90th Percentile", np.percentile(x, 90))
# Measure the percentile intervals and then estimate Standard Deviation of the distribution, both from median to the 90th percentile and from the 10th to 90th percentile
p90 = np.percentile(x, 90)
p10 = np.percentile(x, 10)
p50 = np.median(x)
# p50 to p90 is 1.2815 sigma
rSig = (p90-p50)/1.2815
print("Robust Sigma=", rSig)
rSig = (p90-p10)/(2*1.2815)
print("Robust Sigma=", rSig)
Le résultat que j'obtiens est le suivant :
Mean= 4.99760520022
Median= 4.95395274981
Max/Min= 11.1226494654 -2.15388472011
Sigma= 1.976629928
90th Percentile 7.52065379649
Mean= 9.64760520022
Median= 4.95667658782
Max/Min= 2205.43861943 -2.15388472011
Sigma= 88.6263902244
90th Percentile 7.60646688694
Robust Sigma= 2.06772555531
Robust Sigma= 1.99878292462
Ce qui est proche de la valeur attendue de 2.
Si nous voulons supprimer les points au-dessus/au-dessous de 5 écarts types (avec 1000 points, nous nous attendons à une valeur > 3 écarts types) :
y = x[abs(x - p50) < rSig*5]
# Print the statistics again
print("Mean= ", np.mean(y))
print("Median= ", np.median(y))
print("Max/Min=", y.max(), " ", y.min())
print("StdDev=", np.std(y))
Ce qui donne :
Mean= 4.99755359935
Median= 4.95213030447
Max/Min= 11.1226494654 -2.15388472011
StdDev= 1.97692712883
Je n'ai aucune idée de l'approche la plus efficace/robuste.