25 votes

Python - Un dictionnaire est-il lent pour trouver la fréquence de chaque caractère ?

J'essaie de trouver la fréquence de chaque symbole dans un texte donné en utilisant un algorithme de complexité O(n). Mon algorithme ressemble à ceci :

s = len(text) 
P = 1.0/s 
freqs = {} 
for char in text: 
    try: 
       freqs[char]+=P 
    except: 
       freqs[char]=P 

mais je doute que cette méthode de dictionnaire soit suffisamment rapide, car elle dépend de l'implémentation sous-jacente des méthodes de dictionnaire. Est-ce la méthode la plus rapide ?

MISE À JOUR : il n'y a pas d'augmentation de la vitesse si les collections et les entiers sont utilisés. C'est parce que l'algorithme est déjà de complexité O(n), donc aucune accélération essentielle n'est possible.

Par exemple, les résultats pour un texte de 1 Mo :

without collections:
real    0m0.695s

with collections:
real    0m0.625s

47voto

J.F. Sebastian Points 102961

Comparaison des performances

Remarque : le temps indiqué dans le tableau ne comprend pas le temps nécessaire au chargement des fichiers.

| approach       | american-english, |      big.txt, | time w.r.t. defaultdict |
|                |     time, seconds | time, seconds |                         |
|----------------+-------------------+---------------+-------------------------|
| Counter        |             0.451 |         3.367 |                     3.6 |
| setdefault     |             0.348 |         2.320 |                     2.5 |
| list           |             0.277 |         1.822 |                       2 |
| try/except     |             0.158 |         1.068 |                     1.2 |
| defaultdict    |             0.141 |         0.925 |                       1 |
| numpy          |             0.012 |         0.076 |                   0.082 |
| S.Mark's ext.  |             0.003 |         0.019 |                   0.021 |
| ext. in Cython |             0.001 |         0.008 |                  0.0086 |
#+TBLFM: $4=$3/@7$3;%.2g

Les fichiers utilisés : '/usr/share/dict/american-english' y 'big.txt' .

Le script qui compare les solutions de 'Counter', 'setdefault', 'list', 'try/except', 'defaultdict', 'numpy', 'cython' et @S.Mark se trouve à l'adresse suivante http://gist.github.com/347000

La solution la plus rapide est l'extension Python écrite en Cython :

import cython

@cython.locals(
    chars=unicode,
    i=cython.Py_ssize_t,
    L=cython.Py_ssize_t[0x10000])
def countchars_cython(chars):
    for i in range(0x10000): # unicode code points > 0xffff are not supported
        L[i] = 0

    for c in chars:
        L[c] += 1

    return {unichr(i): L[i] for i in range(0x10000) if L[i]}

Comparaison précédente :

* python (dict) : 0.5  seconds
* python (list) : 0.5  (ascii) (0.2 if read whole file in memory)
* perl          : 0.5
* python (numpy): 0.07 
* c++           : 0.05
* c             : 0.008 (ascii)

Données d'entrée :

$ tail /usr/share/dict/american-english
éclat's
élan
élan's
émigré
émigrés
épée
épées
étude
étude's
études

$ du -h /usr/share/dict/american-english
912K    /usr/share/dict/american-english

python (compteur) : 0.5 secondes

#!/usr/bin/env python3.1
import collections, fileinput, textwrap

chars = (ch for word in fileinput.input() for ch in word.rstrip())
# faster (0.4s) but less flexible: chars = open(filename).read()
print(textwrap.fill(str(collections.Counter(chars)), width=79))

Exécutez-le :

$ time -p python3.1 count_char.py /usr/share/dict/american-english

Counter({'e': 87823, 's': 86620, 'i': 66548, 'a': 62778, 'n': 56696, 'r':
56286, 't': 51588, 'o': 48425, 'l': 39914, 'c': 30020, 'd': 28068, 'u': 25810,
"'": 24511, 'g': 22262, 'p': 20917, 'm': 20747, 'h': 18453, 'b': 14137, 'y':
12367, 'f': 10049, 'k': 7800, 'v': 7573, 'w': 6924, 'z': 3088, 'x': 2082, 'M':
1686, 'C': 1549, 'S': 1515, 'q': 1447, 'B': 1387, 'j': 1376, 'A': 1345, 'P':
974, 'L': 912, 'H': 860, 'T': 858, 'G': 811, 'D': 809, 'R': 749, 'K': 656, 'E':
618, 'J': 539, 'N': 531, 'W': 507, 'F': 502, 'O': 354, 'I': 344, 'V': 330, 'Z':
150, 'Y': 140, 'é': 128, 'U': 117, 'Q': 63, 'X': 42, 'è': 29, 'ö': 12, 'ü': 12,
'ó': 10, 'á': 10, 'ä': 7, 'ê': 6, 'â': 6, 'ñ': 6, 'ç': 4, 'å': 3, 'û': 3, 'í':
2, 'ô': 2, 'Å': 1})
real 0.44
user 0.43
sys 0.01

perl : 0.5 secondes

time -p perl -MData::Dumper -F'' -lanwe'$c{$_}++ for (@F);
END{ $Data::Dumper::Terse = 1; $Data::Dumper::Indent = 0; print Dumper(\%c) }
' /usr/share/dict/american-english

Sortie :

{'S' => 1515,'K' => 656,'' => 29,'d' => 28068,'Y' => 140,'E' => 618,'y' => 12367,'g' => 22262,'e' => 87823,'' => 2,'J' => 539,'' => 241,'' => 3,'' => 6,'' => 4,'' => 128,'D' => 809,'q' => 1447,'b' => 14137,'z' => 3088,'w' => 6924,'Q' => 63,'' => 10,'M' => 1686,'C' => 1549,'' => 10,'L' => 912,'X' => 42,'P' => 974,'' => 12,'\\'' => 24511,'' => 6,'a' => 62778,'T' => 858,'N' => 531,'j' => 1376,'Z' => 150,'u' => 25810,'k' => 7800,'t' => 51588,'' => 6,'W' => 507,'v' => 7573,'s' => 86620,'B' => 1387,'H' => 860,'c' => 30020,'' => 12,'I' => 344,'' => 3,'G' => 811,'U' => 117,'F' => 502,'' => 2,'r' => 56286,'x' => 2082,'V' => 330,'h' => 18453,'f' => 10049,'' => 1,'i' => 66548,'A' => 1345,'O' => 354,'n' => 56696,'m' => 20747,'l' => 39914,'' => 7,'p' => 20917,'R' => 749,'o' => 48425}
real 0.51
user 0.49
sys 0.02

python (numpy) : 0.07 secondes

Sur la base de La réponse de Fourmis Aasma (modifié pour supporter l'unicode) :

#!/usr/bin/env python
import codecs, itertools, operator, sys
import numpy

filename = sys.argv[1] if len(sys.argv)>1 else '/usr/share/dict/american-english'

# ucs2 or ucs4 python?
dtype = {2: numpy.uint16, 4: numpy.uint32}[len(buffer(u"u"))]

# count ordinals
text = codecs.open(filename, encoding='utf-8').read()
a = numpy.frombuffer(text, dtype=dtype)
counts = numpy.bincount(a)

# pretty print
counts = [(unichr(i), v) for i, v in enumerate(counts) if v]
counts.sort(key=operator.itemgetter(1))
print ' '.join('("%s" %d)' % c for c in counts  if c[0] not in ' \t\n')

Sortie :

("Å" 1) ("í" 2) ("ô" 2) ("å" 3) ("û" 3) ("ç" 4) ("â" 6) ("ê" 6) ("ñ" 6) ("ä" 7) ("á" 10) ("ó" 10) ("ö" 12) ("ü" 12) ("è" 29) ("X" 42) ("Q" 63) ("U" 117) ("é" 128) ("Y" 140) ("Z" 150) ("V" 330) ("I" 344) ("O" 354) ("F" 502) ("W" 507) ("N" 531) ("J" 539) ("E" 618) ("K" 656) ("R" 749) ("D" 809) ("G" 811) ("T" 858) ("H" 860) ("L" 912) ("P" 974) ("A" 1345) ("j" 1376) ("B" 1387) ("q" 1447) ("S" 1515) ("C" 1549) ("M" 1686) ("x" 2082) ("z" 3088) ("w" 6924) ("v" 7573) ("k" 7800) ("f" 10049) ("y" 12367) ("b" 14137) ("h" 18453) ("m" 20747) ("p" 20917) ("g" 22262) ("'" 24511) ("u" 25810) ("d" 28068) ("c" 30020) ("l" 39914) ("o" 48425) ("t" 51588) ("r" 56286) ("n" 56696) ("a" 62778) ("i" 66548) ("s" 86620) ("e" 87823)
real 0.07
user 0.06
sys 0.01

c++ : 0,05 seconde

// $ g++ *.cc -lboost_program_options 
// $ ./a.out /usr/share/dict/american-english    
#include <iostream>
#include <fstream>
#include <cstdlib> // exit

#include <boost/program_options/detail/utf8_codecvt_facet.hpp>
#include <boost/tr1/unordered_map.hpp>
#include <boost/foreach.hpp>

int main(int argc, char* argv[]) {
  using namespace std;

  // open input file
  if (argc != 2) {
    cerr << "Usage: " << argv[0] << " <filename>\n";
    exit(2);
  }
  wifstream f(argv[argc-1]); 

  // assume the file has utf-8 encoding
  locale utf8_locale(locale(""), 
      new boost::program_options::detail::utf8_codecvt_facet);
  f.imbue(utf8_locale); 

  // count characters frequencies
  typedef std::tr1::unordered_map<wchar_t, size_t> hashtable_t;  
  hashtable_t counts;
  for (wchar_t ch; f >> ch; )
    counts[ch]++;

  // print result
  wofstream of("output.utf8");
  of.imbue(utf8_locale);
  BOOST_FOREACH(hashtable_t::value_type i, counts) 
    of << "(" << i.first << " " << i.second << ") ";
  of << endl;
}

Résultat :

$ cat output.utf8 

(í 2) (O 354) (P 974) (Q 63) (R 749) (S 1,515) (ñ 6) (T 858) (U 117) (ó 10) (ô 2) (V 330) (W 507) (X 42) (ö 12) (Y 140) (Z 150) (û 3) (ü 12) (a 62,778) (b 14,137) (c 30,020) (d 28,068) (e 87,823) (f 10,049) (g 22,262) (h 18,453) (i 66,548) (j 1,376) (k 7,800) (l 39,914) (m 20,747) (n 56,696) (o 48,425) (p 20,917) (q 1,447) (r 56,286) (s 86,620) (t 51,588) (u 25,810) (Å 1) (' 24,511) (v 7,573) (w 6,924) (x 2,082) (y 12,367) (z 3,088) (A 1,345) (B 1,387) (C 1,549) (á 10) (â 6) (D 809) (E 618) (F 502) (ä 7) (å 3) (G 811) (H 860) (ç 4) (I 344) (J 539) (è 29) (K 656) (é 128) (ê 6) (L 912) (M 1,686) (N 531)

c (ascii) : 0,0079 seconde

// $ gcc -O3 cc_ascii.c -o cc_ascii && time -p ./cc_ascii < input.txt
#include <stdio.h>

enum { N = 256 };
size_t counts[N];

int main(void) {
  // count characters
  int ch = -1;
  while((ch = getchar()) != EOF)
    ++counts[ch];

  // print result
  size_t i = 0;
  for (; i < N; ++i) 
    if (counts[i])
      printf("('%c' %zu) ", (int)i, counts[i]);
  return 0;
}

16voto

YOU Points 44812

Pourquoi ne pas éviter les opérations de flottaison à l'intérieur de la boucle et les effectuer après que tout soit terminé ?

De cette façon, vous pourriez simplement faire +1 à chaque fois, et cela devrait être plus rapide.

Et mieux vaut utiliser collections.defaultdict comme le conseille S.Lott.

freqs=collections.defaultdict(int)

for char in text: 
   freqs[char]+=1

Ou vous pouvez essayer, collections.Counter en python 2.7+

>>> collections.Counter("xyzabcxyz")
Counter({'y': 2, 'x': 2, 'z': 2, 'a': 1, 'c': 1, 'b': 1})

Ou

Vous pouvez essayer psyco qui compilent juste à temps pour python. Vous avez des boucles, donc je pense que vous obtiendrez un gain de performance avec psyco


Edit 1 :

J'ai fait quelques tests sur la base grand.txt (~6.5 MB) qui est utilisée dans correcteur orthographique par peter norvig

Text Length: 6488666

dict.get : 11.9060001373 s
93 chars {u' ': 1036511, u'$': 110, u'(': 1748, u',': 77675, u'0': 3064, u'4': 2417, u'8': 2527, u'<': 2, u'@': 8, ....

if char in dict : 9.71799993515 s
93 chars {u' ': 1036511, u'$': 110, u'(': 1748, u',': 77675, u'0': 3064, u'4': 2417, u'8': 2527, u'<': 2, u'@': 8, ....

dict try/catch : 7.35899996758 s
93 chars {u' ': 1036511, u'$': 110, u'(': 1748, u',': 77675, u'0': 3064, u'4': 2417, u'8': 2527, u'<': 2, u'@': 8, ....

collections.default : 7.29699993134 s
93 chars defaultdict(<type 'int'>, {u' ': 1036511, u'$': 110, u'(': 1748, u',': 77675, u'0': 3064, u'4': 2417, u'8': 2527, u'<': 2, u'@': 8, ....

Spécifications du CPU : Processeur Atom mobile Intel de 1,6 GHz

D'après cela, dict.get est le plus lent y collections.defaultdict est le plus rapide, try/except est aussi le plus rapide.


Edit 2 :

Ajouté collections.Counter Ses résultats sont plus lents que dict.get et a pris 15s dans mon ordinateur portable

collections.Counter : 15.3439998627 s
93 chars Counter({u' ': 1036511, u'e': 628234, u't': 444459, u'a': 395872, u'o': 382683, u'n': 362397, u'i': 348464,

10voto

YOU Points 44812

J'ai écrit Char Counter C Extension to Python, ressemble à ceci 300x plus vite que collections.Counter y 150x plus vite que collections.default(int)

C Char Counter : 0.0469999313354 s
93 chars {u' ': 1036511, u'$': 110, u'(': 1748, u',': 77675, u'0': 3064, u'4': 2417, u'8': 2527, u'<': 2, u'@': 8,

Voici les codes d'extension de Char Counter C

static PyObject *
CharCounter(PyObject *self, PyObject *args, PyObject *keywds)
{
    wchar_t *t1;unsigned l1=0;

    if (!PyArg_ParseTuple(args,"u#",&t1,&l1)) return NULL;

    PyObject *resultList,*itemTuple;

    for(unsigned i=0;i<=0xffff;i++)char_counter[i]=0;

    unsigned chlen=0;

    for(unsigned i=0;i<l1;i++){
        if(char_counter[t1[i]]==0)char_list[chlen++]=t1[i];
        char_counter[t1[i]]++;
    }

    resultList = PyList_New(0);

    for(unsigned i=0;i<chlen;i++){
        itemTuple = PyTuple_New(2);

        PyTuple_SetItem(itemTuple, 0,PyUnicode_FromWideChar(&char_list[i],1));
        PyTuple_SetItem(itemTuple, 1,PyInt_FromLong(char_counter[char_list[i]]));

        PyList_Append(resultList, itemTuple);
        Py_DECREF(itemTuple);

    };

    return resultList;
}

Où char_counter, et char_list sont malloqués au niveau du module, donc pas besoin de malloquer à chaque fois que la fonction appelle.

char_counter=(unsigned*)malloc(sizeof(unsigned)*0x10000);
char_list=(wchar_t*)malloc(sizeof(wchar_t)*0x10000);

Il renvoie une liste de Tuples

[(u'T', 16282), (u'h', 287323), (u'e', 628234), (u' ', 1036511), (u'P', 8946), (u'r', 303977), (u'o', 382683), ...

Pour convertir au format dict, il suffit de dict() fera l'affaire.

dict(CharCounter(text))

PS : Le benchmark incluait le temps de conversion en dictée.

CharCounter n'accepte que les chaînes Python Unicode u"" si le texte est utf8, il faut faire .decode("utf8") à l'avance.

L'entrée supporte Unicode jusqu'au plan de base multilingue (BMP) - 0x0000 à 0xFFFF

6voto

Tuomas Pelkonen Points 5641

Non, ce n'est pas le plus rapide, car vous savez que les caractères ont une portée limitée et vous pourriez utiliser une liste et une indexation directe, en utilisant la représentation numérique du caractère, pour stocker les fréquences.

5voto

Il est très, très difficile à battre dict . Il est très bien réglé puisque presque tout en Python est basé sur les dictées.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X