J'écris un morceau de code qui modélise l'évolution d'un réseau social. L'idée est que chaque personne est assignée à un nœud et que les relations entre les personnes (les bords du réseau) reçoivent un poids de +1 ou -1 selon que la relation est amicale ou inamicale.
En utilisant ce modèle simple, on peut dire qu'une triade de trois personnes est soit "équilibrée", soit "déséquilibrée", selon que le produit des bords de la triade est positif ou négatif.
Finalement, ce que j'essaie de faire, c'est d'implémenter un modèle de type ising. C'est-à-dire que des arêtes aléatoires sont retournées et la nouvelle relation est conservée si le nouveau réseau a plus de triangles équilibrés (une énergie plus faible) que le réseau avant le retournement, si ce n'est pas le cas alors la nouvelle relation n'est conservée qu'avec une certaine probabilité.
Ok, j'en viens enfin à ma question : J'ai écrit le code suivant, mais l'ensemble de données que j'ai contient ~120k triades, en conséquence, il faudra 4 jours pour l'exécuter !
Quelqu'un peut-il me donner des conseils sur la façon d'optimiser le code ?
Merci.
#Importing required librarys
try:
import matplotlib.pyplot as plt
except:
raise
import networkx as nx
import csv
import random
import math
def prod(iterable):
p= 1
for n in iterable:
p *= n
return p
def Sum(iterable):
p= 0
for n in iterable:
p += n[3]
return p
def CalcTriads(n):
firstgen=G.neighbors(n)
Edges=[]
Triads=[]
for i in firstgen:
Edges.append(G.edges(i))
for i in xrange(len(Edges)):
for j in range(len(Edges[i])):# For node n go through the list of edges (j) for the neighboring nodes (i)
if set([Edges[i][j][1]]).issubset(firstgen):# If the second node on the edge is also a neighbor of n (its in firstgen) then keep the edge.
t=[n,Edges[i][j][0],Edges[i][j][1]]
t.sort()
Triads.append(t)# Add found nodes to Triads.
new_Triads = []# Delete duplicate triads.
for elem in Triads:
if elem not in new_Triads:
new_Triads.append(elem)
Triads = new_Triads
for i in xrange(len(Triads)):# Go through list of all Triads finding the weights of their edges using G[node1][node2]. Multiply the three weights and append value to each triad.
a=G[Triads[i][0]][Triads[i][1]].values()
b=G[Triads[i][1]][Triads[i][2]].values()
c=G[Triads[i][2]][Triads[i][0]].values()
Q=prod(a+b+c)
Triads[i].append(Q)
return Triads
###### Import sorted edge data ######
li=[]
with open('Sorted Data.csv', 'rU') as f:
reader = csv.reader(f)
for row in reader:
li.append([float(row[0]),float(row[1]),float(row[2])])
G=nx.Graph()
G.add_weighted_edges_from(li)
for i in xrange(800000):
e = random.choice(li) # Choose random edge
TriNei=[]
a=CalcTriads(e[0]) # Find triads of first node in the chosen edge
for i in xrange(0,len(a)):
if set([e[1]]).issubset(a[i]): # Keep triads which contain the whole edge (i.e. both nodes on the edge)
TriNei.append(a[i])
preH=-Sum(TriNei) # Save the "energy" of all the triads of which the edge is a member
e[2]=-1*e[2]# Flip the weight of the random edge and create a new graph with the flipped edge
G.clear()
G.add_weighted_edges_from(li)
TriNei=[]
a=CalcTriads(e[0])
for i in xrange(0,len(a)):
if set([e[1]]).issubset(a[i]):
TriNei.append(a[i])
postH=-Sum(TriNei)# Calculate the post flip "energy".
if postH<preH:# If the post flip energy is lower then the pre flip energy keep the change
continue
elif random.random() < 0.92: # If the post flip energy is higher then only keep the change with some small probability. (0.92 is an approximate placeholder for exp(-DeltaH)/exp(1) at the moment)
e[2]=-1*e[2]