Vous podría utilice itertools.groupby
puisque vos données sont triées :
>>> a = [77,98,99,100,101,102,198,199,200,200,278,299,300,300,300]
>>> from itertools import groupby
>>> [list(g)[-1][0] for k,g in groupby(enumerate(a), lambda t: (t[1] % 100, t[1])) if k[0] == 0]
[3, 9, 14]
Bien que ce soit un peu cryptique.
Voici une approche compliquée utilisant uniquement un itérateur de liste et l'accumulation dans une liste :
>>> run, prev, idx = False, None, []
>>> for i, e in enumerate(a):
... if not (e % 100 == 0):
... if not run:
... prev = e
... continue
... idx.append(i - 1)
... run = False
... else:
... if prev != e and run:
... idx.append(i - 1)
... run = True
... prev = e
...
>>> if run:
... idx.append(i)
...
>>> idx
[3, 9, 14]
Je pense qu'il est préférable d'utiliser une approche par dictionnaire comme celle de @AshwiniChaudhary. C'est plus simple et beaucoup plus rapide :
>>> timeit.timeit("{item: index for index, item in enumerate(a, 1)}", "from __main__ import a")
1.842843743012054
>>> timeit.timeit("[list(g)[-1][0] for k,g in groupby(enumerate(a), lambda t: (t[1] % 100, t[1])) if k[0] == 0]", "from __main__ import a, groupby")
8.479677081981208
Le site groupby
est assez lente, notez que l'approche compliquée est plus rapide, et pas très éloignée de l'approche dict-compréhension :
>>> def complicated(a):
... run, prev, idx = False, None, []
... for i, e in enumerate(a):
... if not (e % 100 == 0):
... if not run:
... prev = e
... continue
... idx.append(i - 1)
... run = False
... else:
... if prev != e and run:
... idx.append(i - 1)
... run = True
... prev = e
... if run:
... idx.append(i)
... return idx
...
>>> timeit.timeit("complicated(a)", "from __main__ import a, complicated")
2.6667005629860796
Editar
Notez que la différence de performance se réduit si nous appelons list
sur le dict-compréhension .values()
:
>>> timeit.timeit("list({item: index for index, item in enumerate(a, 1)}.values())", "from __main__ import a")
2.3839886570058297
>>> timeit.timeit("complicated(a)", "from __main__ import a, complicated")
2.708565960987471