111 votes

matplotlib (longueur unitaire égale) : avec un rapport d'aspect 'égal', l'axe z n'est pas égal aux axes x et y.

Lorsque je configure un rapport d'aspect égal pour un graphique 3d, la z-axis ne devient pas "égal". Alors ça :

fig = pylab.figure()
mesFig = fig.gca(projection='3d', adjustable='box')
mesFig.axis('equal')
mesFig.plot(xC, yC, zC, 'r.')
mesFig.plot(xO, yO, zO, 'b.')
pyplot.show()

Cela me donne ce qui suit :

img1

Où évidemment l'unité de longueur de l'axe z n'est pas égale aux unités x et y.

Comment puis-je faire en sorte que la longueur unitaire des trois axes soit égale ? Toutes les solutions que j'ai trouvées n'ont pas fonctionné.

86voto

karlo Points 908

J'aime bien les solutions ci-dessus, mais elles ont l'inconvénient de vous obliger à garder la trace des plages et des moyennes sur toutes vos données. Cela peut s'avérer fastidieux si vous avez plusieurs ensembles de données qui seront tracés ensemble. Pour résoudre ce problème, j'ai utilisé les méthodes ax.get_[xyz]lim3d() et j'ai placé le tout dans une fonction autonome qui peut être appelée une seule fois avant d'appeler plt.show(). Voici la nouvelle version :

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

def set_axes_equal(ax):
    '''Make axes of 3D plot have equal scale so that spheres appear as spheres,
    cubes as cubes, etc..  This is one possible solution to Matplotlib's
    ax.set_aspect('equal') and ax.axis('equal') not working for 3D.

    Input
      ax: a matplotlib axis, e.g., as output from plt.gca().
    '''

    x_limits = ax.get_xlim3d()
    y_limits = ax.get_ylim3d()
    z_limits = ax.get_zlim3d()

    x_range = abs(x_limits[1] - x_limits[0])
    x_middle = np.mean(x_limits)
    y_range = abs(y_limits[1] - y_limits[0])
    y_middle = np.mean(y_limits)
    z_range = abs(z_limits[1] - z_limits[0])
    z_middle = np.mean(z_limits)

    # The plot bounding box is a sphere in the sense of the infinity
    # norm, hence I call half the max range the plot radius.
    plot_radius = 0.5*max([x_range, y_range, z_range])

    ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
    ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
    ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_aspect('equal')

X = np.random.rand(100)*10+5
Y = np.random.rand(100)*5+2.5
Z = np.random.rand(100)*50+25

scat = ax.scatter(X, Y, Z)

set_axes_equal(ax)
plt.show()

81voto

Remy F Points 1034

Je crois que matplotlib ne définit pas encore correctement les axes égaux en 3D... Mais j'ai trouvé une astuce il y a quelques temps (je ne me souviens plus où) que j'ai adaptée en l'utilisant. Le concept est de créer une fausse boîte de délimitation cubique autour de vos données. Vous pouvez le tester avec le code suivant :

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_aspect('equal')

X = np.random.rand(100)*10+5
Y = np.random.rand(100)*5+2.5
Z = np.random.rand(100)*50+25

scat = ax.scatter(X, Y, Z)

# Create cubic bounding box to simulate equal aspect ratio
max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max()
Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(X.max()+X.min())
Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() + 0.5*(Y.max()+Y.min())
Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() + 0.5*(Z.max()+Z.min())
# Comment or uncomment following both lines to test the fake bounding box:
for xb, yb, zb in zip(Xb, Yb, Zb):
   ax.plot([xb], [yb], [zb], 'w')

plt.grid()
plt.show()

Les données z sont environ un ordre de grandeur plus grand que les données x et y, mais même avec l'option d'axe égal, l'axe z de matplotlib est auto-échelle :

bad

Mais si vous ajoutez la boîte englobante, vous obtenez une mise à l'échelle correcte :

enter image description here

67voto

AndrewCox Points 144

Une solution simple !

J'ai réussi à le faire fonctionner dans la version 3.3.1.

Il semble que ce problème ait peut-être été résolu en PR#17172 ; Vous pouvez utiliser le ax.set_box_aspect([1,1,1]) pour s'assurer que l'aspect est correct (voir les notes relatives à la fonction set_aspect ). Lorsqu'elle est utilisée en conjonction avec la (les) fonction(s) bounding box fournie(s) par @karlo et/ou @Matee Ulhaq, les tracés ont maintenant un aspect correct en 3D !

matplotlib 3d plot with equal axes

Exemple de travail minimum

import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d
import numpy as np

# Functions from @Mateen Ulhaq and @karlo
def set_axes_equal(ax: plt.Axes):
    """Set 3D plot axes to equal scale.

    Make axes of 3D plot have equal scale so that spheres appear as
    spheres and cubes as cubes.  Required since `ax.axis('equal')`
    and `ax.set_aspect('equal')` don't work on 3D.
    """
    limits = np.array([
        ax.get_xlim3d(),
        ax.get_ylim3d(),
        ax.get_zlim3d(),
    ])
    origin = np.mean(limits, axis=1)
    radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))
    _set_axes_radius(ax, origin, radius)

def _set_axes_radius(ax, origin, radius):
    x, y, z = origin
    ax.set_xlim3d([x - radius, x + radius])
    ax.set_ylim3d([y - radius, y + radius])
    ax.set_zlim3d([z - radius, z + radius])

# Generate and plot a unit sphere
u = np.linspace(0, 2*np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = np.outer(np.cos(u), np.sin(v)) # np.outer() -> outer vector product
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(x, y, z)

ax.set_box_aspect([1,1,1]) # IMPORTANT - this is the new, key line
# ax.set_proj_type('ortho') # OPTIONAL - default is perspective (shown in image above)
set_axes_equal(ax) # IMPORTANT - this is also required
plt.show()

57voto

tauran Points 2963

J'ai simplifié la solution de Rémy F. en utilisant la formule set_x/y/zlim fonctions .

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_aspect('equal')

X = np.random.rand(100)*10+5
Y = np.random.rand(100)*5+2.5
Z = np.random.rand(100)*50+25

scat = ax.scatter(X, Y, Z)

max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() / 2.0

mid_x = (X.max()+X.min()) * 0.5
mid_y = (Y.max()+Y.min()) * 0.5
mid_z = (Z.max()+Z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)

plt.show()

enter image description here

26voto

Matt Panzer Points 571

À partir de matplotlib 3.3.0, Axes3D.set_box_aspect semble être l'approche recommandée.

import numpy as np

xs, ys, zs = <your data>
ax = <your axes>

# Option 1: aspect ratio is 1:1:1 in data space
ax.set_box_aspect((np.ptp(xs), np.ptp(ys), np.ptp(zs)))

# Option 2: aspect ratio 1:1:1 in view space
ax.set_box_aspect((1, 1, 1))

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X