J'essaie de construire un arbre KD (cas statique). Nous supposons que les points sont triés sur les coordonnées x et y.
Pour une profondeur de récursion égale, l'ensemble est divisé en deux sous-ensembles avec une ligne verticale passant par la coordonnée x médiane.
Pour une profondeur de récurrence impaire, l'ensemble est divisé en deux sous-ensembles avec une ligne horizontale passant par la coordonnée y médiane.
La médiane peut être déterminée à partir de l'ensemble trié selon les coordonnées x/y. Je fais cette étape avant chaque division de l'ensemble. Et je pense que c'est la cause de la lenteur de la construction de l'arbre.
- Pouvez-vous m'aider à vérifier et à optimiser le code ?
- Je n'arrive pas à trouver le k-ième plus proche voisin, quelqu'un pourrait-il m'aider avec le code ?
Merci beaucoup pour votre aide et votre patience...
Veuillez consulter l'exemple de code :
class KDNode
{
private:
Point2D *data;
KDNode *left;
KDNode *right;
....
};
void KDTree::createKDTree(Points2DList *pl)
{
//Create list
KDList kd_list;
//Create KD list (all input points)
for (unsigned int i = 0; i < pl->size(); i++)
{
kd_list.push_back((*pl)[i]);
}
//Sort points by x
std::sort(kd_list.begin(), kd_list.end(), sortPoints2DByY());
//Build KD Tree
root = buildKDTree(&kd_list, 1);
}
KDNode * KDTree::buildKDTree(KDList *kd_list, const unsigned int depth)
{
//Build KD tree
const unsigned int n = kd_list->size();
//No leaf will be built
if (n == 0)
{
return NULL;
}
//Only one point: create leaf of KD Tree
else if (n == 1)
{
//Create one leaft
return new KDNode(new Point2D ((*kd_list)[0]));
}
//At least 2 points: create one leaf, split tree into left and right subtree
else
{
//New KD node
KDNode *node = NULL;
//Get median index
const unsigned int median_index = n/2;
//Create new KD Lists
KDList kd_list1, kd_list2;
//The depth is even, process by x coordinate
if (depth%2 == 0)
{
//Create new median node
node = new KDNode(new Point2D( (*kd_list)[median_index]));
//Split list
for (unsigned int i = 0; i < n; i++)
{
//Geta actual point
Point2D *p = &(*kd_list)[i];
//Add point to the first list: x < median.x
if (p->getX() < (*kd_list)[median_index].getX())
{
kd_list1.push_back(*p);
}
//Add point to the second list: x > median.x
else if (p->getX() > (*kd_list)[median_index].getX())
{
kd_list2.push_back(*p);
}
}
//Sort points by y for the next recursion step: slow construction of the tree???
std::sort(kd_list1.begin(), kd_list1.end(), sortPoints2DByY());
std::sort(kd_list2.begin(), kd_list2.end(), sortPoints2DByY());
}
//The depth is odd, process by y coordinates
else
{
//Create new median node
node = new KDNode(new Point2D((*kd_list)[median_index]));
//Split list
for (unsigned int i = 0; i < n; i++)
{
//Geta actual point
Point2D *p = &(*kd_list)[i];
//Add point to the first list: y < median.y
if (p->getY() < (*kd_list)[median_index].getY())
{
kd_list1.push_back(*p);
}
//Add point to the second list: y < median.y
else if (p->getY() >(*kd_list)[median_index].getY())
{
kd_list2.push_back(*p);
}
}
//Sort points by x for the next recursion step: slow construction of the tree???
std::sort(kd_list1.begin(), kd_list1.end(), sortPoints2DByX());
std::sort(kd_list2.begin(), kd_list2.end(), sortPoints2DByX());
}
//Build left subtree
node->setLeft( buildKDTree(&kd_list1, depth +1 ) );
//Build right subtree
node->setRight( buildKDTree(&kd_list2, depth + 1 ) );
//Return new node
return node;
}
}