J'ai récemment été initié à word2vec et j'ai quelques difficultés à comprendre comment il est utilisé pour le clustering k-means.
Je comprends comment k-means fonctionne avec les vecteurs tf-idf. Pour chaque document texte, vous avez un vecteur de valeurs tf-idf et après avoir choisi quelques documents comme centres de clusters initiaux, vous pouvez utiliser la distance euclidienne pour minimiser les distances entre les vecteurs des documents. Voici un exemple exemple .
Cependant, en utilisant word2vec, chaque mot est représenté comme un vecteur. Cela signifie-t-il que chaque document correspond à une matrice ? Et si c'est le cas, comment calculez-vous la distance minimale par rapport aux autres documents textuels ?
Pregunta: Comment calculer la distance entre des documents texte pour k-means avec word2vec ?
Edita: Pour expliquer ma confusion de manière un peu plus détaillée, veuillez considérer le code suivant :
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(sentences_tfidf)
print(tfidf_matrix.toarray())
model = Word2Vec(sentences_word2vec, min_count=1)
word2vec_matrix = model[model.wv.vocab]
print(len(word2vec_matrix))
for i in range(0,len(word2vec_matrix)):
print(X[i])
Il renvoie le code suivant :
[[ 0. 0.55459491 0. 0. 0.35399075 0. 0.
0. 0. 0. 0. 0. 0. 0.437249
0.35399075 0.35399075 0.35399075 0. ]
[ 0. 0. 0. 0.44302215 0.2827753 0. 0.
0. 0.34928375 0. 0. 0. 0.34928375
0. 0.2827753 0.5655506 0.2827753 0. ]
[ 0. 0. 0.35101741 0. 0. 0.27674616
0.35101741 0. 0. 0.35101741 0. 0.35101741
0.27674616 0.27674616 0.44809973 0. 0. 0.27674616]
[ 0.40531999 0. 0. 0. 0.2587105 0.31955894
0. 0.40531999 0.31955894 0. 0.40531999 0. 0.
0. 0. 0.2587105 0.2587105 0.31955894]]
20
[ 4.08335682e-03 -4.44161100e-03 3.92342824e-03 3.96498619e-03
6.99949533e-06 -2.14108804e-04 1.20419310e-03 -1.29191438e-03
1.64671184e-03 3.41688609e-03 -4.94929403e-03 2.90348311e-03
4.23802016e-03 -3.01274913e-03 -7.36164337e-04 3.47558968e-03
-7.02908786e-04 4.73567843e-03 -1.42914290e-03 3.17237526e-03
9.36070050e-04 -2.23833631e-04 -4.03443904e-04 4.97530040e-04
-4.82502300e-03 2.42140982e-03 -3.61089432e-03 3.37070058e-04
-2.09900597e-03 -1.82093668e-03 -4.74618562e-03 2.41499138e-03
-2.15628324e-03 3.43719614e-03 7.50159554e-04 -2.05973233e-03
1.92534993e-03 1.96503079e-03 -2.02400610e-03 3.99564439e-03
4.95056808e-03 1.47033704e-03 -2.80071306e-03 3.59585625e-04
-2.77896033e-04 -3.21732066e-03 4.36303904e-03 -2.16396619e-03
2.24438333e-03 -4.50925855e-03 -4.70488053e-03 6.30825118e-04
3.81869613e-03 3.75767215e-03 5.01064525e-04 1.70175335e-03
-1.26033701e-04 -7.43318116e-04 -6.74833194e-04 -4.76678275e-03
1.53754558e-03 2.32421421e-03 -3.23472451e-03 -8.32759659e-04
4.67014220e-03 5.15853462e-04 -1.15449808e-03 -1.63017167e-03
-2.73897988e-03 -3.95627553e-03 4.04657237e-03 -1.79282576e-03
-3.26930732e-03 2.85121426e-03 -2.33304151e-03 -2.01760884e-03
-3.33597139e-03 -1.19233003e-03 -2.12347694e-03 4.36858647e-03
2.00414215e-03 -4.23572073e-03 4.98410035e-03 1.79121632e-03
4.81655030e-03 3.33247939e-03 -3.95260006e-03 1.19335402e-03
4.61675343e-04 6.09758368e-04 -4.74696746e-03 4.91552567e-03
1.74517138e-03 2.36604619e-03 -3.06009664e-04 3.62954312e-03
3.56943789e-03 2.92139384e-03 -4.27138479e-03 -3.51175456e-03]
[ -4.14272398e-03 3.45513038e-03 -1.47538856e-04 -2.02292087e-03
-2.96578306e-04 1.88684417e-03 -2.63865804e-03 2.69249966e-03
4.57606697e-03 2.19206396e-03 2.01336667e-03 1.47434452e-03
1.88332598e-03 -1.14452699e-03 -1.35678309e-03 -2.02636060e-04
-3.26160830e-03 -3.95368552e-03 1.40415027e-03 2.30542314e-03
-3.18884710e-03 -4.46776347e-03 3.96415358e-03 -2.07852037e-03
4.98413946e-03 -6.43568579e-04 -2.53325375e-03 1.30117545e-03
1.26555841e-03 -8.84680718e-04 -8.34991166e-04 -4.15050285e-03
4.66807076e-04 1.71844949e-04 1.08140183e-03 4.37910948e-03
-3.28412466e-03 2.09890743e-04 2.29888223e-03 4.70223464e-03
-2.31004297e-03 -5.10134443e-04 2.57104915e-03 -2.55978899e-03
-7.55646848e-04 -1.98197929e-04 1.20443532e-04 4.63618943e-03
1.13036349e-05 8.16594984e-04 -1.65917678e-03 3.29331891e-03
-4.97825304e-03 -2.03667139e-03 3.60272871e-03 7.44500838e-04
-4.40325850e-04 6.38399797e-04 -4.23364760e-03 -4.56386572e-03
4.77551389e-03 4.74880403e-03 7.06148741e-04 -1.24937459e-03
-9.50689311e-04 -3.88551364e-03 -4.45985980e-03 -1.15060725e-03
3.27067473e-03 4.54987818e-03 2.62327422e-03 -2.40981602e-03
4.55576897e-04 3.19155119e-03 -3.84227419e-03 -1.17610034e-03
-1.45622855e-03 -4.32460709e-03 -4.12792247e-03 -1.74557802e-03
4.66075348e-04 3.39668151e-03 -4.00651991e-03 1.41077011e-03
-7.89384532e-04 -6.56061340e-04 1.14822399e-03 4.12205653e-03
3.60721885e-03 -3.11746349e-04 1.44255662e-03 3.11965472e-03
-4.93455213e-03 4.80490318e-03 2.79991422e-03 4.93505970e-03
3.69034940e-03 4.76422161e-03 -1.25827035e-03 -1.94680784e-03]
...
[ -3.92252317e-04 -3.66805331e-03 1.52376946e-03 -3.81564132e-05
-2.57118000e-03 -4.46725264e-03 2.36480637e-03 -4.70252614e-03
-4.18651942e-03 4.54758806e-03 4.38804098e-04 1.28351408e-03
3.40470579e-03 1.00038981e-03 -1.06557179e-03 4.67202952e-03
4.50591929e-03 -2.67829909e-03 2.57702312e-03 -3.65824508e-03
-4.54068230e-03 2.20785337e-03 -1.00554363e-03 5.14690124e-04
4.64830594e-03 1.91410910e-03 -4.83837258e-03 6.73376708e-05
-2.37796479e-03 -4.45193471e-03 -2.60163331e-03 1.51159777e-03
4.06868104e-03 2.55690538e-04 -2.54662265e-03 2.64597777e-03
-2.62586889e-03 -2.71554058e-03 5.49281889e-04 -1.38776843e-03
-2.94354092e-03 -1.13887887e-03 4.59292997e-03 -1.02300232e-03
2.27600057e-03 -4.88117011e-03 1.95790920e-03 4.64376673e-04
2.56658648e-03 8.90390365e-04 -1.40368659e-03 -6.40658545e-04
-3.53228673e-03 -1.30717538e-03 -1.80223631e-03 2.94505036e-03
-4.82233381e-03 -2.16079340e-03 2.58940039e-03 1.60595961e-03
-1.22245611e-03 -6.72614493e-04 4.47060820e-03 -4.95934719e-03
2.70283176e-03 2.93257344e-03 2.13279200e-04 2.59435410e-03
2.98801321e-03 -2.79974379e-03 -1.49789048e-04 -2.53924704e-03
-7.83207070e-04 1.18357304e-03 -1.27669750e-03 -4.16665291e-03
1.40916929e-03 1.63017987e-07 1.36708119e-03 -1.26687710e-05
1.24729215e-03 -2.50442210e-03 -3.20308795e-03 -1.41550787e-03
-1.05747324e-03 -3.97984264e-03 2.25877413e-03 -1.28316227e-03
3.60359484e-03 -1.97929185e-04 3.21712159e-03 -4.96298913e-03
-1.83640339e-03 -9.90608009e-04 -2.03964626e-03 -4.87274351e-03
7.24950165e-04 3.85614252e-03 -4.18979349e-03 2.73840013e-03]
En utilisant tfidf, k-means serait implémenté par les lignes suivantes
kmeans = KMeans(n_clusters = 5)
kmeans.fit(tfidf_matrix)
En utilisant word2vec, k-means serait implémenté par les lignes suivantes
kmeans = KMeans(n_clusters = 5)
kmeans.fit(word2vec_matrix)
(Voici un exemple de k-means avec word2vec). Ainsi, dans le premier cas, k-means obtient une matrice avec les valeurs tf-idf de chaque mot par document, alors que dans le second cas, k-means obtient un vecteur pour chaque mot. Comment k-means peut-il regrouper les documents dans le second cas s'il ne dispose que des représentations word2vec ?