3 votes

Questions sur le benchmark de PyOpenCl

J'ai un peu modifié le code standard de https://github.com/inducer/pyopencl/blob/master/examples/benchmark-all.py

Remplacée par des chiffres, la variable zz

import pyopencl as cl
import numpy
import numpy.linalg as la
import datetime
from time import time
zz=100
a = numpy.random.rand(zz).astype(numpy.float32)
b = numpy.random.rand(zz).astype(numpy.float32)
c_result = numpy.empty_like(a)

# Speed in normal CPU usage
time1 = time()
for i in range(zz):
        for j in range(zz):
                c_result[i] = a[i] + b[i]
                c_result[i] = c_result[i] * (a[i] + b[i])
                c_result[i] = c_result[i] * (a[i] / 2)
time2 = time()
print("Execution time of test without OpenCL: ", time2 - time1, "s")

for platform in cl.get_platforms():
    for device in platform.get_devices():
        print("===============================================================")
        print("Platform name:", platform.name)
        print("Platform profile:", platform.profile)
        print("Platform vendor:", platform.vendor)
        print("Platform version:", platform.version)
        print("---------------------------------------------------------------")
        print("Device name:", device.name)
        print("Device type:", cl.device_type.to_string(device.type))
        print("Device memory: ", device.global_mem_size//1024//1024, 'MB')
        print("Device max clock speed:", device.max_clock_frequency, 'MHz')
        print("Device compute units:", device.max_compute_units)

        # Simnple speed test
        ctx = cl.Context([device])
        queue = cl.CommandQueue(ctx, 
                properties=cl.command_queue_properties.PROFILING_ENABLE)

        mf = cl.mem_flags
        a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a)
        b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b)
        dest_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes)

        prg = cl.Program(ctx, """
            __kernel void sum(__global const float *a,
            __global const float *b, __global float *c)
            {
                        int loop;
                        int gid = get_global_id(0);
                        for(loop=0; loop<%s;loop++)
                        {
                                c[gid] = a[gid] + b[gid];
                                c[gid] = c[gid] * (a[gid] + b[gid]);
                                c[gid] = c[gid] * (a[gid] / 2);
                        }
                }
                """ % (zz)).build()

        exec_evt = prg.sum(queue, a.shape, None, a_buf, b_buf, dest_buf)
        exec_evt.wait()
        elapsed = 1e-9*(exec_evt.profile.end - exec_evt.profile.start)

        print("Execution time of test: %g s" % elapsed)

        c = numpy.empty_like(a)
        cl.enqueue_read_buffer(queue, dest_buf, c).wait()
        error = 0
        for i in range(zz):
                if c[i] != c_result[i]:
                        error = 1
        if error:
                print("Results doesn't match!!")
        else:
                print("Results OK")

Si zz=100 j'ai :

('Execution time of test without OpenCL: ', 0.10500001907348633, 's')
===============================================================
('Platform name:', 'AMD Accelerated Parallel Processing')
('Platform profile:', 'FULL_PROFILE')
('Platform vendor:', 'Advanced Micro Devices, Inc.')
('Platform version:', 'OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213)')
---------------------------------------------------------------
('Device name:', 'Cypress\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
('Device type:', 'GPU')
('Device memory: ', 800, 'MB')
('Device max clock speed:', 850, 'MHz')
('Device compute units:', 20)
Execution time of test: 0.00168922 s
Results OK
===============================================================
('Platform name:', 'AMD Accelerated Parallel Processing')
('Platform profile:', 'FULL_PROFILE')
('Platform vendor:', 'Advanced Micro Devices, Inc.')
('Platform version:', 'OpenCL 1.1 AMD-APP-SDK-v2.5 (684.213)')
---------------------------------------------------------------
('Device name:', 'Intel(R) Core(TM) i5 CPU         750  @ 2.67GHz\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
('Device type:', 'CPU')
('Device memory: ', 8183L, 'MB')
('Device max clock speed:', 3000, 'MHz')
('Device compute units:', 4)
Execution time of test: 4.369e-05 s
Results OK

Nous avons 3 temps :

normal  ('Execution time of test without OpenCL: ', 0.10500001907348633, 's')
pyopencl radeon 5870: Execution time of test: 0.00168922 s
pyopencl i5 CPU 750: Execution time of test: 4.369e-05 s

Les premières questions pack : ce qui est pyopencl i5 CPU 750 ? pourquoi il plus rapide "normal"('Execution time of test without OpenCL) en 250 fois ? et pourquoi il plus rapide "pyopencl radeon 5870" en ~38 fois ?

Si zz=1000, nous avons :

normal  ('Execution time of test without OpenCL: ', 9.05299997329712, 's')
pyopencl radeon 5870:Execution time of test: 0.0104431 s
pyopencl i5 CPU 750: Execution time of test: 0.00238112 s

i5*5=radeon5870

i5*3800=normal

Si zz=10000

normal its to long... comment code...
redeon58700, Execution time of test: 0.085571 s
i5, Execution time of test: 0.261854 s

Ici nous voyons comment gagner une carte vidéo.

Il est néanmoins très intéressant de comparer les résultats de la séquence de temps. normal_stage1*90=normal_stage2 normal_stage2*~95=normal_stage3(basé sur l'expérience)

i5_stage1*52=i5_stage2 i5_stage2*109=i5_stage3

radeon5870_stage1*6=radeon_stage2 radeon_stage2*8=radeon_stage3

quelqu'un peut-il expliquer pourquoi les résultats de la croissance d'opencl n'ont pas été linéaires ?

2voto

aland Points 4264

Eh bien, il est peu probable que la croissance soit linéaire, puisque la complexité des algorithmes est O(zz^2).

Pour tirer des conclusions sur la "linéarité", vous devriez disposer de plus de 3 points (et la barre d'erreur est également très utile lors de ce type d'analyse), car pour le GPU, 100 threads sont de loin insuffisants pour utiliser pleinement sa puissance de calcul (comme le montre votre expérience, le GPU ne commence à battre le CPU qu'à partir de 10 000 threads ou plus - c'est une situation tout à fait normale).

Un gain de vitesse de 250 fois sur le CPU uniquement n'est pas non plus improbable, puisque python est un langage interposé, donc pas très rapide en soi, et qu'OpenCL utilise activement les instructions SIMD du CPU, ce qui donne également un bon gain de vitesse, même par rapport à C+OpenMP.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X