Il existe de nombreuses façons d'y parvenir, comme aplatir et filtrer ou simplement énumérer, mais je pense que l'utilisation de Tableau booléen/masque est la plus simple (et, je crois, la plus rapide) :
>>> y = np.array([[123,24123,32432], [234,24,23]])
array([[ 123, 24123, 32432],
[ 234, 24, 23]])
>>> b = y > 200
>>> b
array([[False, True, True],
[ True, False, False]], dtype=bool)
>>> y[b]
array([24123, 32432, 234])
>>> len(y[b])
3
>>>> y[b].sum()
56789
Mise à jour :
Comme l'a répondu nneonneo, si tout ce que vous voulez est le nombre d'éléments qui passe le seuil, vous pouvez simplement le faire :
>>>> (y>200).sum()
3
ce qui est une solution plus simple.
Comparaison de la vitesse avec filter
:
### use boolean/mask array ###
b = y > 200
%timeit y[b]
100000 loops, best of 3: 3.31 us per loop
%timeit y[y>200]
100000 loops, best of 3: 7.57 us per loop
### use filter ###
x = y.ravel()
%timeit filter(lambda x:x>200, x)
100000 loops, best of 3: 9.33 us per loop
%timeit np.array(filter(lambda x:x>200, x))
10000 loops, best of 3: 21.7 us per loop
%timeit filter(lambda x:x>200, y.ravel())
100000 loops, best of 3: 11.2 us per loop
%timeit np.array(filter(lambda x:x>200, y.ravel()))
10000 loops, best of 3: 22.9 us per loop
*** use numpy.where ***
nb = np.where(y>200)
%timeit y[nb]
100000 loops, best of 3: 2.42 us per loop
%timeit y[np.where(y>200)]
100000 loops, best of 3: 10.3 us per loop