J'essaie de construire un modèle de réseau neuronal avec une couche cachée (1024 nœuds). La couche cachée n'est rien d'autre qu'une unité relu. Je traite également les données d'entrée par lots de 128.
Les entrées sont des images de taille 28 * 28. Dans le code suivant, j'obtiens l'erreur à la ligne
_, c = sess.run([optimizer, loss], feed_dict={x: batch_x, y: batch_y})
Error: TypeError: Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder_64:0", shape=(128, 784), dtype=float32) is not an element of this graph.
Voici le code que j'ai écrit
#Initialize
batch_size = 128
layer1_input = 28 * 28
hidden_layer1 = 1024
num_labels = 10
num_steps = 3001
#Create neural network model
def create_model(inp, w, b):
layer1 = tf.add(tf.matmul(inp, w['w1']), b['b1'])
layer1 = tf.nn.relu(layer1)
layer2 = tf.matmul(layer1, w['w2']) + b['b2']
return layer2
#Initialize variables
x = tf.placeholder(tf.float32, shape=(batch_size, layer1_input))
y = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
w = {
'w1': tf.Variable(tf.random_normal([layer1_input, hidden_layer1])),
'w2': tf.Variable(tf.random_normal([hidden_layer1, num_labels]))
}
b = {
'b1': tf.Variable(tf.zeros([hidden_layer1])),
'b2': tf.Variable(tf.zeros([num_labels]))
}
init = tf.initialize_all_variables()
train_prediction = tf.nn.softmax(model)
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
model = create_model(x, w, b)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model, y))
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#Process
with tf.Session(graph=graph1) as sess:
tf.initialize_all_variables().run()
total_batch = int(train_dataset.shape[0] / batch_size)
for epoch in range(num_steps):
loss = 0
for i in range(total_batch):
batch_x, batch_y = train_dataset[epoch * batch_size:(epoch+1) * batch_size, :], train_labels[epoch * batch_size:(epoch+1) * batch_size,:]
_, c = sess.run([optimizer, loss], feed_dict={x: batch_x, y: batch_y})
loss = loss + c
loss = loss / total_batch
if epoch % 500 == 0:
print ("Epoch :", epoch, ". cost = {:.9f}".format(avg_cost))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
valid_prediction = tf.run(tf_valid_dataset, {x: tf_valid_dataset})
print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))
test_prediction = tf.run(tf_test_dataset, {x: tf_test_dataset})
print("TEST accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))