Dans la continuité de la réponse de David, il y a une autre possibilité de mettre la bile en créant une classe dérivée de boost::transform_iterator. J'utilise cette solution dans mes projets :
namespace detail
{
template<bool IsConst, bool IsVolatile, typename T>
struct add_cv_if_c
{
typedef T type;
};
template<typename T>
struct add_cv_if_c<true, false, T>
{
typedef const T type;
};
template<typename T>
struct add_cv_if_c<false, true, T>
{
typedef volatile T type;
};
template<typename T>
struct add_cv_if_c<true, true, T>
{
typedef const volatile T type;
};
template<typename TestConst, typename TestVolatile, typename T>
struct add_cv_if: public add_cv_if_c<TestConst::value, TestVolatile::value, T>
{};
} // namespace detail
/** An unary function that accesses the member of class T specified in the MemberPtr template parameter.
The cv-qualification of T is preserved for MemberType
*/
template<typename T, typename MemberType, MemberType T::*MemberPtr>
struct access_member_f
{
// preserve cv-qualification of T for T::second_type
typedef typename detail::add_cv_if<
std::tr1::is_const<T>,
std::tr1::is_volatile<T>,
MemberType
>::type& result_type;
result_type operator ()(T& t) const
{
return t.*MemberPtr;
}
};
/** @short An iterator adaptor accessing the member called 'second' of the class the
iterator is pointing to.
*/
template<typename Iterator>
class accessing_second_iterator: public
boost::transform_iterator<
access_member_f<
// note: we use the Iterator's reference because this type
// is the cv-qualified iterated type (as opposed to value_type).
// We want to preserve the cv-qualification because the iterator
// might be a const_iterator e.g. iterating a const
// std::pair<> but std::pair<>::second_type isn't automatically
// const just because the pair is const - access_member_f is
// preserving the cv-qualification, otherwise compiler errors will
// be the result
typename std::tr1::remove_reference<
typename std::iterator_traits<Iterator>::reference
>::type,
typename std::iterator_traits<Iterator>::value_type::second_type,
&std::iterator_traits<Iterator>::value_type::second
>,
Iterator
>
{
typedef boost::transform_iterator<
access_member_f<
typename std::tr1::remove_reference<
typename std::iterator_traits<Iterator>::reference
>::type,
typename std::iterator_traits<Iterator>::value_type::second_type,
&std::iterator_traits<Iterator>::value_type::second
>,
Iterator
> baseclass;
public:
accessing_second_iterator():
baseclass()
{}
// note: allow implicit conversion from Iterator
accessing_second_iterator(Iterator it):
baseclass(it)
{}
};
Cela permet d'obtenir un code encore plus propre :
void run_map_value()
{
typedef map<int, string> a_map_t;
a_map_t a_map;
a_map[0] = "zero";
a_map[1] = "one";
a_map[2] = "two";
typedef accessing_second_iterator<a_map_t::const_iterator> ia_t;
// note: specify the iterator adaptor type explicitly as template type, enabling
// implicit conversion from begin()/end()
copy<ia_t>(a_map.begin(), a_map.end(),
ostream_iterator<string>(cout, "\n")
);
}