Les réponses ci-dessus soulignent l'impact de la taille du bloc sur les performances et suggèrent une heuristique commune pour son choix, basée sur la maximisation de l'occupation. Sans vouloir fournir des les pour choisir la taille du bloc, il convient de mentionner que CUDA 6.5 (maintenant en version Release Candidate) inclut plusieurs nouvelles fonctions d'exécution pour faciliter les calculs d'occupation et la configuration du lancement, voir
CUDA Pro Tip : L'API d'occupation simplifie la configuration du lancement
L'une des fonctions utiles est cudaOccupancyMaxPotentialBlockSize
qui calcule de manière heuristique une taille de bloc permettant d'atteindre l'occupation maximale. Les valeurs fournies par cette fonction pourraient ensuite être utilisées comme point de départ d'une optimisation manuelle des paramètres de lancement. Voici un petit exemple.
#include <stdio.h>
/************************/
/* TEST KERNEL FUNCTION */
/************************/
__global__ void MyKernel(int *a, int *b, int *c, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) { c[idx] = a[idx] + b[idx]; }
}
/********/
/* MAIN */
/********/
void main()
{
const int N = 1000000;
int blockSize; // The launch configurator returned block size
int minGridSize; // The minimum grid size needed to achieve the maximum occupancy for a full device launch
int gridSize; // The actual grid size needed, based on input size
int* h_vec1 = (int*) malloc(N*sizeof(int));
int* h_vec2 = (int*) malloc(N*sizeof(int));
int* h_vec3 = (int*) malloc(N*sizeof(int));
int* h_vec4 = (int*) malloc(N*sizeof(int));
int* d_vec1; cudaMalloc((void**)&d_vec1, N*sizeof(int));
int* d_vec2; cudaMalloc((void**)&d_vec2, N*sizeof(int));
int* d_vec3; cudaMalloc((void**)&d_vec3, N*sizeof(int));
for (int i=0; i<N; i++) {
h_vec1[i] = 10;
h_vec2[i] = 20;
h_vec4[i] = h_vec1[i] + h_vec2[i];
}
cudaMemcpy(d_vec1, h_vec1, N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_vec2, h_vec2, N*sizeof(int), cudaMemcpyHostToDevice);
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, MyKernel, 0, N);
// Round up according to array size
gridSize = (N + blockSize - 1) / blockSize;
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Occupancy calculator elapsed time: %3.3f ms \n", time);
cudaEventRecord(start, 0);
MyKernel<<<gridSize, blockSize>>>(d_vec1, d_vec2, d_vec3, N);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Kernel elapsed time: %3.3f ms \n", time);
printf("Blocksize %i\n", blockSize);
cudaMemcpy(h_vec3, d_vec3, N*sizeof(int), cudaMemcpyDeviceToHost);
for (int i=0; i<N; i++) {
if (h_vec3[i] != h_vec4[i]) { printf("Error at i = %i! Host = %i; Device = %i\n", i, h_vec4[i], h_vec3[i]); return; };
}
printf("Test passed\n");
}
EDIT
En cudaOccupancyMaxPotentialBlockSize
est défini dans le cuda_runtime.h
et est défini comme suit :
template<class T>
__inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSize(
int *minGridSize,
int *blockSize,
T func,
size_t dynamicSMemSize = 0,
int blockSizeLimit = 0)
{
return cudaOccupancyMaxPotentialBlockSizeVariableSMem(minGridSize, blockSize, func, __cudaOccupancyB2DHelper(dynamicSMemSize), blockSizeLimit);
}
La signification des paramètres est la suivante
minGridSize = Suggested min grid size to achieve a full machine launch.
blockSize = Suggested block size to achieve maximum occupancy.
func = Kernel function.
dynamicSMemSize = Size of dynamically allocated shared memory. Of course, it is known at runtime before any kernel launch. The size of the statically allocated shared memory is not needed as it is inferred by the properties of func.
blockSizeLimit = Maximum size for each block. In the case of 1D kernels, it can coincide with the number of input elements.
Notez qu'à partir de CUDA 6.5, vous devez calculer vos propres dimensions de bloc 2D/3D à partir de la taille de bloc 1D suggérée par l'API.
Notez également que l'API du pilote CUDA contient des API fonctionnellement équivalentes pour le calcul de l'occupation, de sorte qu'il est possible d'utiliser cuOccupancyMaxPotentialBlockSize
dans le code de l'API du pilote de la même manière que pour l'API d'exécution dans l'exemple ci-dessus.