J'ai fait cette tâche avant. Mais c'était principalement pour mesurer la consommation d'énergie et les températures CPU. Le code suivant (qui est assez long) atteint presque optimale sur mon Core i7 2600K.
Le point clé ici est de noter la quantité massive de manuel boucle-déroulage ainsi que l'entrelacement de multiplie les et ajoute...
Le projet complet peut être trouvé sur mon GitHub: https://github.com/Mysticial/Flops
Avertissement:
Si vous décidez de le compiler et de l'exécuter, faites attention à votre CPU températures!!!
Assurez-vous de ne pas surchauffer. Et assurez-vous que CPU-limitation n'affecte pas vos résultats!
En outre, je ne prends aucune responsabilité pour quelque dommage qui pourrait résulter de l'exécution de ce code.
Notes:
- Ce code est optimisé pour x64. x86 n'a pas assez de registres pour que cela compile bien.
- Ce code a été testé pour fonctionner bien sur Visual Studio 2010/2012 et GCC 4.6.
CPI 11 (Intel Compilateur 11), étonnamment, a de la difficulté à le compiler.
- Ce sont pour la pré-FMA processeurs. Afin d'atteindre des pics de FLOPS sur les processeurs Intel Haswell et les processeurs AMD Bulldozer (et plus tard), FMA (Fused Multiply Ajouter) des instructions seront nécessaires. Ces sont au-delà de la portée de cet indice de référence.
#include <emmintrin.h>
#include <omp.h>
#include <iostream>
using namespace std;
typedef unsigned long long uint64;
double test_dp_mac_SSE(double x,double y,uint64 iterations){
register __m128d r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,rB,rC,rD,rE,rF;
// Generate starting data.
r0 = _mm_set1_pd(x);
r1 = _mm_set1_pd(y);
r8 = _mm_set1_pd(-0.0);
r2 = _mm_xor_pd(r0,r8);
r3 = _mm_or_pd(r0,r8);
r4 = _mm_andnot_pd(r8,r0);
r5 = _mm_mul_pd(r1,_mm_set1_pd(0.37796447300922722721));
r6 = _mm_mul_pd(r1,_mm_set1_pd(0.24253562503633297352));
r7 = _mm_mul_pd(r1,_mm_set1_pd(4.1231056256176605498));
r8 = _mm_add_pd(r0,_mm_set1_pd(0.37796447300922722721));
r9 = _mm_add_pd(r1,_mm_set1_pd(0.24253562503633297352));
rA = _mm_sub_pd(r0,_mm_set1_pd(4.1231056256176605498));
rB = _mm_sub_pd(r1,_mm_set1_pd(4.1231056256176605498));
rC = _mm_set1_pd(1.4142135623730950488);
rD = _mm_set1_pd(1.7320508075688772935);
rE = _mm_set1_pd(0.57735026918962576451);
rF = _mm_set1_pd(0.70710678118654752440);
uint64 iMASK = 0x800fffffffffffffull;
__m128d MASK = _mm_set1_pd(*(double*)&iMASK);
__m128d vONE = _mm_set1_pd(1.0);
uint64 c = 0;
while (c < iterations){
size_t i = 0;
while (i < 1000){
// Here's the meat - the part that really matters.
r0 = _mm_mul_pd(r0,rC);
r1 = _mm_add_pd(r1,rD);
r2 = _mm_mul_pd(r2,rE);
r3 = _mm_sub_pd(r3,rF);
r4 = _mm_mul_pd(r4,rC);
r5 = _mm_add_pd(r5,rD);
r6 = _mm_mul_pd(r6,rE);
r7 = _mm_sub_pd(r7,rF);
r8 = _mm_mul_pd(r8,rC);
r9 = _mm_add_pd(r9,rD);
rA = _mm_mul_pd(rA,rE);
rB = _mm_sub_pd(rB,rF);
r0 = _mm_add_pd(r0,rF);
r1 = _mm_mul_pd(r1,rE);
r2 = _mm_sub_pd(r2,rD);
r3 = _mm_mul_pd(r3,rC);
r4 = _mm_add_pd(r4,rF);
r5 = _mm_mul_pd(r5,rE);
r6 = _mm_sub_pd(r6,rD);
r7 = _mm_mul_pd(r7,rC);
r8 = _mm_add_pd(r8,rF);
r9 = _mm_mul_pd(r9,rE);
rA = _mm_sub_pd(rA,rD);
rB = _mm_mul_pd(rB,rC);
r0 = _mm_mul_pd(r0,rC);
r1 = _mm_add_pd(r1,rD);
r2 = _mm_mul_pd(r2,rE);
r3 = _mm_sub_pd(r3,rF);
r4 = _mm_mul_pd(r4,rC);
r5 = _mm_add_pd(r5,rD);
r6 = _mm_mul_pd(r6,rE);
r7 = _mm_sub_pd(r7,rF);
r8 = _mm_mul_pd(r8,rC);
r9 = _mm_add_pd(r9,rD);
rA = _mm_mul_pd(rA,rE);
rB = _mm_sub_pd(rB,rF);
r0 = _mm_add_pd(r0,rF);
r1 = _mm_mul_pd(r1,rE);
r2 = _mm_sub_pd(r2,rD);
r3 = _mm_mul_pd(r3,rC);
r4 = _mm_add_pd(r4,rF);
r5 = _mm_mul_pd(r5,rE);
r6 = _mm_sub_pd(r6,rD);
r7 = _mm_mul_pd(r7,rC);
r8 = _mm_add_pd(r8,rF);
r9 = _mm_mul_pd(r9,rE);
rA = _mm_sub_pd(rA,rD);
rB = _mm_mul_pd(rB,rC);
i++;
}
// Need to renormalize to prevent denormal/overflow.
r0 = _mm_and_pd(r0,MASK);
r1 = _mm_and_pd(r1,MASK);
r2 = _mm_and_pd(r2,MASK);
r3 = _mm_and_pd(r3,MASK);
r4 = _mm_and_pd(r4,MASK);
r5 = _mm_and_pd(r5,MASK);
r6 = _mm_and_pd(r6,MASK);
r7 = _mm_and_pd(r7,MASK);
r8 = _mm_and_pd(r8,MASK);
r9 = _mm_and_pd(r9,MASK);
rA = _mm_and_pd(rA,MASK);
rB = _mm_and_pd(rB,MASK);
r0 = _mm_or_pd(r0,vONE);
r1 = _mm_or_pd(r1,vONE);
r2 = _mm_or_pd(r2,vONE);
r3 = _mm_or_pd(r3,vONE);
r4 = _mm_or_pd(r4,vONE);
r5 = _mm_or_pd(r5,vONE);
r6 = _mm_or_pd(r6,vONE);
r7 = _mm_or_pd(r7,vONE);
r8 = _mm_or_pd(r8,vONE);
r9 = _mm_or_pd(r9,vONE);
rA = _mm_or_pd(rA,vONE);
rB = _mm_or_pd(rB,vONE);
c++;
}
r0 = _mm_add_pd(r0,r1);
r2 = _mm_add_pd(r2,r3);
r4 = _mm_add_pd(r4,r5);
r6 = _mm_add_pd(r6,r7);
r8 = _mm_add_pd(r8,r9);
rA = _mm_add_pd(rA,rB);
r0 = _mm_add_pd(r0,r2);
r4 = _mm_add_pd(r4,r6);
r8 = _mm_add_pd(r8,rA);
r0 = _mm_add_pd(r0,r4);
r0 = _mm_add_pd(r0,r8);
// Prevent Dead Code Elimination
double out = 0;
__m128d temp = r0;
out += ((double*)&temp)[0];
out += ((double*)&temp)[1];
return out;
}
void test_dp_mac_SSE(int tds,uint64 iterations){
double *sum = (double*)malloc(tds * sizeof(double));
double start = omp_get_wtime();
#pragma omp parallel num_threads(tds)
{
double ret = test_dp_mac_SSE(1.1,2.1,iterations);
sum[omp_get_thread_num()] = ret;
}
double secs = omp_get_wtime() - start;
uint64 ops = 48 * 1000 * iterations * tds * 2;
cout << "Seconds = " << secs << endl;
cout << "FP Ops = " << ops << endl;
cout << "FLOPs = " << ops / secs << endl;
double out = 0;
int c = 0;
while (c < tds){
out += sum[c++];
}
cout << "sum = " << out << endl;
cout << endl;
free(sum);
}
int main(){
// (threads, iterations)
test_dp_mac_SSE(8,10000000);
system("pause");
}
De sortie (1 thread, 10000000 itérations) - Compilé avec Visual Studio 2010 SP1 x64 Version:
Seconds = 55.5104
FP Ops = 960000000000
FLOPs = 1.7294e+010
sum = 2.22652
La machine est un Core i7 2600K @ 4.4 GHz. Théorique de l'ESS de pointe est de 4 flops * 4.4 GHz = 17.6 GFlops. Ce code réalise 17.3 GFlops - pas mal.
De sortie (8 threads, 10000000 itérations) - Compilé avec Visual Studio 2010 SP1 x64 Version:
Seconds = 117.202
FP Ops = 7680000000000
FLOPs = 6.55279e+010
sum = 17.8122
Théorique de l'ESS de pointe est de 4 flops * 4 carottes * 4.4 GHz = 70.4 GFlops. Réel est de 65,5 GFlops.
Prenons un peu plus loin. AVX...
#include <immintrin.h>
#include <omp.h>
#include <iostream>
using namespace std;
typedef unsigned long long uint64;
double test_dp_mac_AVX(double x,double y,uint64 iterations){
register __m256d r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,rB,rC,rD,rE,rF;
// Generate starting data.
r0 = _mm256_set1_pd(x);
r1 = _mm256_set1_pd(y);
r8 = _mm256_set1_pd(-0.0);
r2 = _mm256_xor_pd(r0,r8);
r3 = _mm256_or_pd(r0,r8);
r4 = _mm256_andnot_pd(r8,r0);
r5 = _mm256_mul_pd(r1,_mm256_set1_pd(0.37796447300922722721));
r6 = _mm256_mul_pd(r1,_mm256_set1_pd(0.24253562503633297352));
r7 = _mm256_mul_pd(r1,_mm256_set1_pd(4.1231056256176605498));
r8 = _mm256_add_pd(r0,_mm256_set1_pd(0.37796447300922722721));
r9 = _mm256_add_pd(r1,_mm256_set1_pd(0.24253562503633297352));
rA = _mm256_sub_pd(r0,_mm256_set1_pd(4.1231056256176605498));
rB = _mm256_sub_pd(r1,_mm256_set1_pd(4.1231056256176605498));
rC = _mm256_set1_pd(1.4142135623730950488);
rD = _mm256_set1_pd(1.7320508075688772935);
rE = _mm256_set1_pd(0.57735026918962576451);
rF = _mm256_set1_pd(0.70710678118654752440);
uint64 iMASK = 0x800fffffffffffffull;
__m256d MASK = _mm256_set1_pd(*(double*)&iMASK);
__m256d vONE = _mm256_set1_pd(1.0);
uint64 c = 0;
while (c < iterations){
size_t i = 0;
while (i < 1000){
// Here's the meat - the part that really matters.
r0 = _mm256_mul_pd(r0,rC);
r1 = _mm256_add_pd(r1,rD);
r2 = _mm256_mul_pd(r2,rE);
r3 = _mm256_sub_pd(r3,rF);
r4 = _mm256_mul_pd(r4,rC);
r5 = _mm256_add_pd(r5,rD);
r6 = _mm256_mul_pd(r6,rE);
r7 = _mm256_sub_pd(r7,rF);
r8 = _mm256_mul_pd(r8,rC);
r9 = _mm256_add_pd(r9,rD);
rA = _mm256_mul_pd(rA,rE);
rB = _mm256_sub_pd(rB,rF);
r0 = _mm256_add_pd(r0,rF);
r1 = _mm256_mul_pd(r1,rE);
r2 = _mm256_sub_pd(r2,rD);
r3 = _mm256_mul_pd(r3,rC);
r4 = _mm256_add_pd(r4,rF);
r5 = _mm256_mul_pd(r5,rE);
r6 = _mm256_sub_pd(r6,rD);
r7 = _mm256_mul_pd(r7,rC);
r8 = _mm256_add_pd(r8,rF);
r9 = _mm256_mul_pd(r9,rE);
rA = _mm256_sub_pd(rA,rD);
rB = _mm256_mul_pd(rB,rC);
r0 = _mm256_mul_pd(r0,rC);
r1 = _mm256_add_pd(r1,rD);
r2 = _mm256_mul_pd(r2,rE);
r3 = _mm256_sub_pd(r3,rF);
r4 = _mm256_mul_pd(r4,rC);
r5 = _mm256_add_pd(r5,rD);
r6 = _mm256_mul_pd(r6,rE);
r7 = _mm256_sub_pd(r7,rF);
r8 = _mm256_mul_pd(r8,rC);
r9 = _mm256_add_pd(r9,rD);
rA = _mm256_mul_pd(rA,rE);
rB = _mm256_sub_pd(rB,rF);
r0 = _mm256_add_pd(r0,rF);
r1 = _mm256_mul_pd(r1,rE);
r2 = _mm256_sub_pd(r2,rD);
r3 = _mm256_mul_pd(r3,rC);
r4 = _mm256_add_pd(r4,rF);
r5 = _mm256_mul_pd(r5,rE);
r6 = _mm256_sub_pd(r6,rD);
r7 = _mm256_mul_pd(r7,rC);
r8 = _mm256_add_pd(r8,rF);
r9 = _mm256_mul_pd(r9,rE);
rA = _mm256_sub_pd(rA,rD);
rB = _mm256_mul_pd(rB,rC);
i++;
}
// Need to renormalize to prevent denormal/overflow.
r0 = _mm256_and_pd(r0,MASK);
r1 = _mm256_and_pd(r1,MASK);
r2 = _mm256_and_pd(r2,MASK);
r3 = _mm256_and_pd(r3,MASK);
r4 = _mm256_and_pd(r4,MASK);
r5 = _mm256_and_pd(r5,MASK);
r6 = _mm256_and_pd(r6,MASK);
r7 = _mm256_and_pd(r7,MASK);
r8 = _mm256_and_pd(r8,MASK);
r9 = _mm256_and_pd(r9,MASK);
rA = _mm256_and_pd(rA,MASK);
rB = _mm256_and_pd(rB,MASK);
r0 = _mm256_or_pd(r0,vONE);
r1 = _mm256_or_pd(r1,vONE);
r2 = _mm256_or_pd(r2,vONE);
r3 = _mm256_or_pd(r3,vONE);
r4 = _mm256_or_pd(r4,vONE);
r5 = _mm256_or_pd(r5,vONE);
r6 = _mm256_or_pd(r6,vONE);
r7 = _mm256_or_pd(r7,vONE);
r8 = _mm256_or_pd(r8,vONE);
r9 = _mm256_or_pd(r9,vONE);
rA = _mm256_or_pd(rA,vONE);
rB = _mm256_or_pd(rB,vONE);
c++;
}
r0 = _mm256_add_pd(r0,r1);
r2 = _mm256_add_pd(r2,r3);
r4 = _mm256_add_pd(r4,r5);
r6 = _mm256_add_pd(r6,r7);
r8 = _mm256_add_pd(r8,r9);
rA = _mm256_add_pd(rA,rB);
r0 = _mm256_add_pd(r0,r2);
r4 = _mm256_add_pd(r4,r6);
r8 = _mm256_add_pd(r8,rA);
r0 = _mm256_add_pd(r0,r4);
r0 = _mm256_add_pd(r0,r8);
// Prevent Dead Code Elimination
double out = 0;
__m256d temp = r0;
out += ((double*)&temp)[0];
out += ((double*)&temp)[1];
out += ((double*)&temp)[2];
out += ((double*)&temp)[3];
return out;
}
void test_dp_mac_AVX(int tds,uint64 iterations){
double *sum = (double*)malloc(tds * sizeof(double));
double start = omp_get_wtime();
#pragma omp parallel num_threads(tds)
{
double ret = test_dp_mac_AVX(1.1,2.1,iterations);
sum[omp_get_thread_num()] = ret;
}
double secs = omp_get_wtime() - start;
uint64 ops = 48 * 1000 * iterations * tds * 4;
cout << "Seconds = " << secs << endl;
cout << "FP Ops = " << ops << endl;
cout << "FLOPs = " << ops / secs << endl;
double out = 0;
int c = 0;
while (c < tds){
out += sum[c++];
}
cout << "sum = " << out << endl;
cout << endl;
free(sum);
}
int main(){
// (threads, iterations)
test_dp_mac_AVX(8,10000000);
system("pause");
}
De sortie (1 thread, 10000000 itérations) - Compilé avec Visual Studio 2010 SP1 x64 Version:
Seconds = 57.4679
FP Ops = 1920000000000
FLOPs = 3.34099e+010
sum = 4.45305
Théorique AVX de pointe est de 8 flops * 4.4 GHz = 35.2 GFlops. Réel est de 33,4 GFlops.
De sortie (8 threads, 10000000 itérations) - Compilé avec Visual Studio 2010 SP1 x64 Version:
Seconds = 111.119
FP Ops = 15360000000000
FLOPs = 1.3823e+011
sum = 35.6244
Théorique AVX de pointe est de 8 flops * 4 carottes * 4.4 GHz = 140.8 GFlops. Réel est 138.2 GFlops.
Maintenant, pour quelques explications:
La critique pour les performances de la partie est bien évidemment l'48 instructions à l'intérieur de la boucle interne. Vous remarquerez qu'il est décomposé en 4 blocs de 12 instructions de chacun. Chacun de ces 12 instructions de blocs sont complètement indépendants les uns des autres, et, il faut en moyenne 6 cycles pour exécuter.
Donc, il y a 12 instructions et 6 cycles entre problème à utiliser. Le temps de latence de multiplication est de 5 cycles, il est donc juste assez pour éviter la latence des stands.
L'étape de normalisation est nécessaire de conserver les données de plus de/underflowing. Cela est nécessaire, car l'absence de code va augmenter/diminuer l'ampleur des données.
Il est donc effectivement possible de faire mieux que ça si vous venez d'utiliser tous les zéros et de se débarrasser de l'étape de normalisation. Cependant, depuis que j'ai écrit l'indice de référence pour mesurer la consommation électrique et la température, je devais m'assurer que les flops étaient en "réel" de données, plutôt que des zéros - comme les unités d'exécution peut très bien avoir des cas spéciaux de manutention pour les zéros qui utilisent moins d'énergie et produisent moins de chaleur.
Plus De Résultats:
- Intel Core i7 920 @ 3.5 GHz
- Windows 7 Ultimate x64
- Visual Studio 2010 SP1 x64 Version
Fils: 1
Seconds = 72.1116
FP Ops = 960000000000
FLOPs = 1.33127e+010
sum = 2.22652
Théorique de l'ESS de Pointe: 4 flops * 3.5 GHz = 14.0 GFlops. Réel est de 13,3 GFlops.
Threads: 8
Seconds = 149.576
FP Ops = 7680000000000
FLOPs = 5.13452e+010
sum = 17.8122
Théorique de l'ESS de Pointe: 4 flops * 4 carottes * 3.5 GHz = 56.0 GFlops. Réel est de 51,3 GFlops.
Mon processeur temps de frapper 76C sur le multi-thread à exécuter! Si vous exécute ces, être sûr que les résultats ne sont donc pas concernées par la limitation des processeurs.
- 2 x Intel Xeon X5482 Harpertown @ 3.2 GHz
- Ubuntu Linux 10 x64
- GCC 4.5.2 x64 - (-O2 -msse3 -fopenmp)
Fils: 1
Seconds = 78.3357
FP Ops = 960000000000
FLOPs = 1.22549e+10
sum = 2.22652
Théorique de l'ESS de Pointe: 4 flops * 3.2 GHz = 12.8 GFlops. Réel est de 12,3 GFlops.
Threads: 8
Seconds = 78.4733
FP Ops = 7680000000000
FLOPs = 9.78676e+10
sum = 17.8122
Théorique de l'ESS de Pointe: 4 flops * 8 carottes * 3.2 GHz = 102.4 GFlops. Réel est de 97,9 GFlops.