2 votes

python selenium scraping from multiple href list

Voici l'url à tester https://stockx.com/puma?prices=300-400,200-300&size_types=men&years=2017

Je peux extraire toutes les pages détaillées des produits href mais je n'obtiens qu'un seul résultat à la fin. Il est censé aller à tous les liens et m'extraire le nom et l'url de l'image. Qu'est-ce qui m'échappe ?

Résultat de la sortie actuelle en json

[
    {
        "product_name": "Puma Clyde WWE Undertaker Black",
        "imgurl": "https://stockx.imgix.net/Puma-Clyde-WWE-Undertaker-Black.png?fit=fill&bg=FFFFFF&w=700&h=500&auto=format,compress&q=90&dpr=2&trim=color&updated_at=1538080256"
    }
]

Voici le code de travail

import selenium
import json
import time
import re
import string
import requests
import bs4
from selenium import webdriver
from selenium.webdriver import Firefox
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.firefox.options import Options
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support.select import Select

domain =  'https://stockx.com/puma?prices=300-400,200-300&size_types=men&years=2017'

def prepare_driver(url):
    options = Options()
    # options.add_argument('-headless')
    driver = webdriver.Chrome(executable_path='/Users/Documents/python/Selenium/bin/chromedriver')
    driver.get(url)
    time.sleep(2)
    wait = WebDriverWait(driver, 10).until(EC.presence_of_element_located(
        (By.CLASS_NAME, 'title-container')))
    return driver

def fill_form(driver, search_argument):
    '''Finds all the input tags in form and makes a POST requests.'''
    #search_field = driver.find_element_by_id('q')
    #search_field.send_keys(search_argument)
    # We look for the search button and click it
    #driver.find_element_by_class_name('search__submit')\
        #.click()
    wait = WebDriverWait(driver, timeout=10).until(
        EC.presence_of_all_elements_located(
            (By.CLASS_NAME, 'title-container')))
def scrape_results(driver, n_results):
    '''Returns the data from n_results amount of results.'''

    product_urls = list()
    product_data = list()

    for product_title in driver.find_elements_by_css_selector("div[class*='tile browse-tile']"):
        product_urls.append(product_title.find_element_by_css_selector(
            "a[href*='/']").get_attribute('href'))
    print(*product_urls, sep = "\n")
    for url in range(0, n_results):
        if url == n_results:
            break
        url_data = scrape_product_data(driver, product_urls[url])
        product_data.append(url_data)
        #print(*product_data, sep = "\n")
        return product_data

def scrape_product_data(driver, product_url):
    '''Visits an product page and extracts the data.'''

    if driver == None:
        driver = prepare_driver(product_url)

    driver.get(product_url)
    time.sleep(12)

    product_fields = dict()
    # Get the product name
    product_fields['product_name'] = driver.find_element_by_xpath(
    '//div[@class="col-md-12"]/h1').text

    # Get the image url
    product_fields['imgurl'] = driver.find_element_by_xpath(
    '//img[@class="product-image"]').get_attribute('src')
    return product_fields

if __name__ == '__main__':

    try:
        driver = prepare_driver(domain)
        #fill_form(driver, 'juniole tf')
        product_data = scrape_results(driver, 4)
        product_data = json.dumps(product_data, indent=4) #ensure_acii => changes japanese to correct character
        with open('booking_data_stockx.json', 'w') as f:
            f.write(product_data)
    finally:
        driver.quit()

2voto

QHarr Points 24420

Je pense qu'il est possible de tout faire avec des demandes. J'ai choisi quelques éléments aléatoires des pages visitées pour prouver la visite.

import requests
from bs4 import BeautifulSoup as bs
import pandas as pd
baseURL = 'https://stockx.com'
final = []
with requests.Session() as s:
    res = s.get('https://stockx.com/puma?prices=300-400,200-300&size_types=men&years=2017')
    soup = bs(res.content, 'lxml')
    items  = soup.select('#products-container [href]')
    titles = [item['id'] for item in items]
    links = [baseURL + item['href'] for item in items]
    results = list(zip(titles, links))
    df = pd.DataFrame(results) 
    for result in results:
        res = s.get(result[1])
        soup = bs(res.content, 'lxml')
        details = [item.text for item in soup.select('.detail')]
        final.append([result[0], result[1], details])
df2 = pd.DataFrame(final)
df2.to_csv(r'C:\Users\User\Desktop\data.csv', sep=',', encoding='utf-8',index = False )

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X