Tout dépend de la longueur de l' String
inspecté. Si, comme la question dit, c'est pour de longues chaînes, le moyen le plus rapide pour inspecter la chaîne est d'utiliser la réflexion pour accéder à la sauvegarde char[]
de la chaîne.
Entièrement randomisé de référence avec JDK 8 (win32 et win64) sur un 64, AMD Phenom II 4 core 955 @ 3.2 GHZ (en mode client et serveur de mode) avec 9 différentes techniques (voir ci-dessous!) montre que l'utilisation d' String.charAt(n)
est le plus rapide pour les petites chaînes et que l'utilisation d' reflection
pour accéder à la Chaîne de la sauvegarde de tableau est presque deux fois plus rapide pour les grandes chaînes.
L'EXPÉRIENCE
9 les différentes techniques d'optimisation sont essayé.
Toutes les chaînes de caractères contenus sont randomisés
Les test sont fait pour les formats de chaîne dans des multiples de deux en commençant par 0,1,2,4,8,16 etc.
Les tests sont fait 1000 fois par taille de la chaîne
Les tests sont mélangés dans un ordre aléatoire à chaque fois. En d'autres termes, les tests sont effectués dans un ordre aléatoire à chaque fois qu'ils sont fait, plus de 1000 fois.
L'ensemble de la suite de test est fait avant, et en arrière, à montrer l'effet de la JVM de chauffe sur l'optimisation et de la fois.
Toute la suite est fait deux fois, une fois dans -client
mode et l'autre en -server
mode.
CONCLUSIONS
-en mode client (32 bits)
Pour les chaînes 1 à 256 caractères, appelant string.charAt(i)
victoires avec une moyenne de traitement de 13,4 millions de dollars à 588 millions de caractères par seconde.
Aussi, il est de 5,5% plus rapide (client) et 13,9% (serveur) comme ceci:
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
que comme ça avec un local de la finale, de longueur variable:
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
Pendant de longues chaînes, 512 256 caractères de longueur, à l'aide de réflexion pour accéder à la Chaîne du support de tableau est plus rapide. Cette technique est presque deux fois plus vite que la Chaîne.charAt(i) (178% plus rapide). La vitesse moyenne au cours de cette gamme a été 1,111 milliard de caractères par seconde.
Le Champ doit être obtenu à l'avance et ensuite il peut être ré-utilisé dans la bibliothèque sur des cordes différentes. Il est intéressant de noter, à la différence du code ci-dessus, avec accès sur le Terrain, c'est 9% plus rapide d'avoir un local de la finale, de longueur variable que l'utilisation de 'caractères.la longueur de la boucle de contrôle. Voici comment accéder au Terrain peut être configuré comme le plus rapide:
final Field field = String.class.getDeclaredField("value");
field.setAccessible(true);
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
Observations particulières à formuler sur -le mode serveur
Accéder au terrain de départ de gagner après 32 caractères les chaînes de longueur en mode serveur sur une version 64 bits de Java machine sur mon AMD 64 de la machine. Qui n'avait pas vu jusqu'à 512 caractères en mode client.
Également à noter, je pense que lorsque j'étais en train de JDK 8 (32 bits) en mode serveur, la performance globale a été de 7% plus lent pour les petites et grandes chaînes. C'était de construire avec 121 Déc 2013 du JDK 8 libération anticipée. Donc, pour l'instant, il semble que 32 bits mode de serveur est plus lent que le 32 bits en mode client.
Cela dit ... il semble que la seule mode serveur qui vaut de l'invocation est sur un ordinateur 64 bits. Sinon, il fait entrave à la performance.
Pour 32 bits s'exécutant en -server mode
sur un AMD64, je peux dire ceci:
- Chaîne de caractères.charAt(i) est le gagnant clair dans l'ensemble. Bien qu'entre les tailles de 8 à 512 caractères, il y avait des gagnants parmi les "nouveaux ""réutiliser" et "champ".
- Chaîne de caractères.charAt(i) est de 45% plus rapide en mode client
- Le terrain est deux fois plus rapide pour les grandes Chaînes de caractères en mode client.
Aussi important de dire, de Chaîne.caractères() (Flux et la version parallèle) sont un buste. Beaucoup plus lent que de toute autre manière. L' Streams
API est plutôt lent pour effectuer générale des opérations de la chaîne.
Liste De Souhaits
Java Chaîne pourrait avoir prédicat d'accepter optimisée des méthodes telles que contient(prédicat), forEach(le consommateur), forEachWithIndex(le consommateur). Ainsi, sans la nécessité pour l'utilisateur de connaître la longueur de la ou des appels répétés à la Chaîne de méthodes, celles-ci pourraient aider les bibliothèques d'analyse beep-beep beep
speedup.
Continuer de rêver :)
Heureux Les Chaînes!
~SH
Le test utilisé en 9 méthodes de test de la chaîne de la présence d'espaces:
"charAt1" -- VÉRIFIER le CONTENU de LA CHAÎNE de LA MANIÈRE HABITUELLE:
int charAtMethod1(final String data) {
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return len;
}
"charAt2" -- MÊMES QUE ci-DESSUS, MAIS UTILISER des chaînes de caractères.longueur() au LIEU DE FAIRE UNE FINALE LOCALE int POUR LA Longueur
int charAtMethod2(final String data) {
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return data.length();
}
"le ruisseau" -- UTILISER LE NOUVEAU JAVA 8 de la Chaîne de IntStream ET de PASSER à UN PRÉDICAT D'effectuer LA VÉRIFICATION
int streamMethod(final String data, final IntPredicate predicate) {
if (data.chars().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
"streamPara" -- MÊME QUE ci-DESSUS, MAIS OH-LA-LA - PARALLÈLE!!!
// avoid this at all costs
int streamParallelMethod(final String data, IntPredicate predicate) {
if (data.chars().parallel().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
"réutilisation" -- RECHARGE RÉUTILISABLES char[] AVEC LES CHAÎNES de CONTENU
int reuseBuffMethod(final char[] reusable, final String data) {
final int len = data.length();
data.getChars(0, len, reusable, 0);
for (int i = 0; i < len; i++) {
if (reusable[i] <= ' ') {
doThrow();
}
}
return len;
}
"new1" -- OBTENIR UNE NOUVELLE COPIE DU char[] à PARTIR de LA CHAÎNE
int newMethod1(final String data) {
final int len = data.length();
final char[] copy = data.toCharArray();
for (int i = 0; i < len; i++) {
if (copy[i] <= ' ') {
doThrow();
}
}
return len;
}
"new2" -- MÊME QUE ci-DESSUS, MAIS l'UTILISATION de "FOR-each"
int newMethod2(final String data) {
for (final char c : data.toCharArray()) {
if (c <= ' ') {
doThrow();
}
}
return data.length();
}
"champ1" -- FANTAISIE!! OBTENIR le CHAMP DE l'ACCÈS À LA CHAÎNE INTERNE DE char[]
int fieldMethod1(final Field field, final String data) {
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
"champ2", les MÊMES QUE ci-DESSUS, MAIS l'UTILISATION de "FOR-each"
int fieldMethod2(final Field field, final String data) {
final char[] chars;
try {
chars = (char[]) field.get(data);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
for (final char c : chars) {
if (c <= ' ') {
doThrow();
}
}
return chars.length;
}
RÉSULTATS COMPOSITES, POUR le CLIENT, -client
MODE (en avant et en arrière des tests combinés)
Remarque: le mode client avec Java 32 bits et en mode serveur avec Java en 64 bits sont les mêmes que ci-dessous sur mon AMD64 machine.
Size WINNER charAt1 charAt2 stream streamPar reuse new1 new2 field1 field2
1 charAt 77.0 72.0 462.0 584.0 127.5 89.5 86.0 159.5 165.0
2 charAt 38.0 36.5 284.0 32712.5 57.5 48.3 50.3 89.0 91.5
4 charAt 19.5 18.5 458.6 3169.0 33.0 26.8 27.5 54.1 52.6
8 charAt 9.8 9.9 100.5 1370.9 17.3 14.4 15.0 26.9 26.4
16 charAt 6.1 6.5 73.4 857.0 8.4 8.2 8.3 13.6 13.5
32 charAt 3.9 3.7 54.8 428.9 5.0 4.9 4.7 7.0 7.2
64 charAt 2.7 2.6 48.2 232.9 3.0 3.2 3.3 3.9 4.0
128 charAt 2.1 1.9 43.7 138.8 2.1 2.6 2.6 2.4 2.6
256 charAt 1.9 1.6 42.4 90.6 1.7 2.1 2.1 1.7 1.8
512 field1 1.7 1.4 40.6 60.5 1.4 1.9 1.9 1.3 1.4
1,024 field1 1.6 1.4 40.0 45.6 1.2 1.9 2.1 1.0 1.2
2,048 field1 1.6 1.3 40.0 36.2 1.2 1.8 1.7 0.9 1.1
4,096 field1 1.6 1.3 39.7 32.6 1.2 1.8 1.7 0.9 1.0
8,192 field1 1.6 1.3 39.6 30.5 1.2 1.8 1.7 0.9 1.0
16,384 field1 1.6 1.3 39.8 28.4 1.2 1.8 1.7 0.8 1.0
32,768 field1 1.6 1.3 40.0 26.7 1.3 1.8 1.7 0.8 1.0
65,536 field1 1.6 1.3 39.8 26.3 1.3 1.8 1.7 0.8 1.0
131,072 field1 1.6 1.3 40.1 25.4 1.4 1.9 1.8 0.8 1.0
262,144 field1 1.6 1.3 39.6 25.2 1.5 1.9 1.9 0.8 1.0
RÉSULTATS COMPOSITES POUR le SERVEUR -server
MODE (en avant et en arrière des tests combinés)
Remarque: ce test est pour Java 32 bits s'exécutant en mode serveur sur un AMD64. Le mode de serveur pour Java 64 bits est le même que Java 32 bits en mode client, sauf que l'accès à un Champ de départ de gagner après 32 taille des caractères.
Size WINNER charAt1 charAt2 stream streamPar reuse new1 new2 field1 field2
1 charAt 74.5 95.5 524.5 783.0 90.5 102.5 90.5 135.0 151.5
2 charAt 48.5 53.0 305.0 30851.3 59.3 57.5 52.0 88.5 91.8
4 charAt 28.8 32.1 132.8 2465.1 37.6 33.9 32.3 49.0 47.0
8 new2 18.0 18.6 63.4 1541.3 18.5 17.9 17.6 25.4 25.8
16 new2 14.0 14.7 129.4 1034.7 12.5 16.2 12.0 16.0 16.6
32 new2 7.8 9.1 19.3 431.5 8.1 7.0 6.7 7.9 8.7
64 reuse 6.1 7.5 11.7 204.7 3.5 3.9 4.3 4.2 4.1
128 reuse 6.8 6.8 9.0 101.0 2.6 3.0 3.0 2.6 2.7
256 field2 6.2 6.5 6.9 57.2 2.4 2.7 2.9 2.3 2.3
512 reuse 4.3 4.9 5.8 28.2 2.0 2.6 2.6 2.1 2.1
1,024 charAt 2.0 1.8 5.3 17.6 2.1 2.5 3.5 2.0 2.0
2,048 charAt 1.9 1.7 5.2 11.9 2.2 3.0 2.6 2.0 2.0
4,096 charAt 1.9 1.7 5.1 8.7 2.1 2.6 2.6 1.9 1.9
8,192 charAt 1.9 1.7 5.1 7.6 2.2 2.5 2.6 1.9 1.9
16,384 charAt 1.9 1.7 5.1 6.9 2.2 2.5 2.5 1.9 1.9
32,768 charAt 1.9 1.7 5.1 6.1 2.2 2.5 2.5 1.9 1.9
65,536 charAt 1.9 1.7 5.1 5.5 2.2 2.4 2.4 1.9 1.9
131,072 charAt 1.9 1.7 5.1 5.4 2.3 2.5 2.5 1.9 1.9
262,144 charAt 1.9 1.7 5.1 5.1 2.3 2.5 2.5 1.9 1.9
PLEIN DE CODE DE PROGRAMME EXÉCUTABLE
(essai sur Java 7 et les versions antérieures, retirez les deux flux de tests)
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.function.IntPredicate;
/**
* @author Saint Hill <http://stackoverflow.com/users/1584255/saint-hill>
*/
public final class TestStrings {
// we will not test strings longer than 512KM
final int MAX_STRING_SIZE = 1024 * 256;
// for each string size, we will do all the tests
// this many times
final int TRIES_PER_STRING_SIZE = 1000;
public static void main(String[] args) throws Exception {
new TestStrings().run();
}
void run() throws Exception {
// double the length of the data until it reaches MAX chars long
// 0,1,2,4,8,16,32,64,128,256 ...
final List<Integer> sizes = new ArrayList<>();
for (int n = 0; n <= MAX_STRING_SIZE; n = (n == 0 ? 1 : n * 2)) {
sizes.add(n);
}
// CREATE RANDOM (FOR SHUFFLING ORDER OF TESTS)
final Random random = new Random();
System.out.println("Rate in nanoseconds per character inspected.");
System.out.printf("==== FORWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);
printHeadings(TRIES_PER_STRING_SIZE, random);
for (int size : sizes) {
reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
}
// reverse order or string sizes
Collections.reverse(sizes);
System.out.println("");
System.out.println("Rate in nanoseconds per character inspected.");
System.out.printf("==== BACKWARDS (tries per size: %s) ==== \n", TRIES_PER_STRING_SIZE);
printHeadings(TRIES_PER_STRING_SIZE, random);
for (int size : sizes) {
reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
}
}
///
///
/// METHODS OF CHECKING THE CONTENTS
/// OF A STRING. ALWAYS CHECKING FOR
/// WHITESPACE (CHAR <=' ')
///
///
// CHECK THE STRING CONTENTS
int charAtMethod1(final String data) {
final int len = data.length();
for (int i = 0; i < len; i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return len;
}
// SAME AS ABOVE BUT USE String.length()
// instead of making a new final local int
int charAtMethod2(final String data) {
for (int i = 0; i < data.length(); i++) {
if (data.charAt(i) <= ' ') {
doThrow();
}
}
return data.length();
}
// USE new Java-8 String's IntStream
// pass it a PREDICATE to do the checking
int streamMethod(final String data, final IntPredicate predicate) {
if (data.chars().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
// OH LA LA - GO PARALLEL!!!
int streamParallelMethod(final String data, IntPredicate predicate) {
if (data.chars().parallel().anyMatch(predicate)) {
doThrow();
}
return data.length();
}
// Re-fill a resuable char[] with the contents
// of the String's char[]
int reuseBuffMethod(final char[] reusable, final String data) {
final int len = data.length();
data.getChars(0, len, reusable, 0);
for (int i = 0; i < len; i++) {
if (reusable[i] <= ' ') {
doThrow();
}
}
return len;
}
// Obtain a new copy of char[] from String
int newMethod1(final String data) {
final int len = data.length();
final char[] copy = data.toCharArray();
for (int i = 0; i < len; i++) {
if (copy[i] <= ' ') {
doThrow();
}
}
return len;
}
// Obtain a new copy of char[] from String
// but use FOR-EACH
int newMethod2(final String data) {
for (final char c : data.toCharArray()) {
if (c <= ' ') {
doThrow();
}
}
return data.length();
}
// FANCY!
// OBTAIN FIELD FOR ACCESS TO THE STRING'S
// INTERNAL CHAR[]
int fieldMethod1(final Field field, final String data) {
try {
final char[] chars = (char[]) field.get(data);
final int len = chars.length;
for (int i = 0; i < len; i++) {
if (chars[i] <= ' ') {
doThrow();
}
}
return len;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
// same as above but use FOR-EACH
int fieldMethod2(final Field field, final String data) {
final char[] chars;
try {
chars = (char[]) field.get(data);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
for (final char c : chars) {
if (c <= ' ') {
doThrow();
}
}
return chars.length;
}
/**
*
* Make a list of tests. We will shuffle a copy of this list repeatedly
* while we repeat this test.
*
* @param data
* @return
*/
List<Jobber> makeTests(String data) throws Exception {
// make a list of tests
final List<Jobber> tests = new ArrayList<Jobber>();
tests.add(new Jobber("charAt1") {
int check() {
return charAtMethod1(data);
}
});
tests.add(new Jobber("charAt2") {
int check() {
return charAtMethod2(data);
}
});
tests.add(new Jobber("stream") {
final IntPredicate predicate = new IntPredicate() {
public boolean test(int value) {
return value <= ' ';
}
};
int check() {
return streamMethod(data, predicate);
}
});
tests.add(new Jobber("streamPar") {
final IntPredicate predicate = new IntPredicate() {
public boolean test(int value) {
return value <= ' ';
}
};
int check() {
return streamParallelMethod(data, predicate);
}
});
// Reusable char[] method
tests.add(new Jobber("reuse") {
final char[] cbuff = new char[MAX_STRING_SIZE];
int check() {
return reuseBuffMethod(cbuff, data);
}
});
// New char[] from String
tests.add(new Jobber("new1") {
int check() {
return newMethod1(data);
}
});
// New char[] from String
tests.add(new Jobber("new2") {
int check() {
return newMethod2(data);
}
});
// Use reflection for field access
tests.add(new Jobber("field1") {
final Field field;
{
field = String.class.getDeclaredField("value");
field.setAccessible(true);
}
int check() {
return fieldMethod1(field, data);
}
});
// Use reflection for field access
tests.add(new Jobber("field2") {
final Field field;
{
field = String.class.getDeclaredField("value");
field.setAccessible(true);
}
int check() {
return fieldMethod2(field, data);
}
});
return tests;
}
/**
* We use this class to keep track of test results
*/
abstract class Jobber {
final String name;
long nanos;
long chars;
long runs;
Jobber(String name) {
this.name = name;
}
abstract int check();
final double nanosPerChar() {
double charsPerRun = chars / runs;
long nanosPerRun = nanos / runs;
return charsPerRun == 0 ? nanosPerRun : nanosPerRun / charsPerRun;
}
final void run() {
runs++;
long time = System.nanoTime();
chars += check();
nanos += System.nanoTime() - time;
}
}
// MAKE A TEST STRING OF RANDOM CHARACTERS A-Z
private String makeTestString(int testSize, char start, char end) {
Random r = new Random();
char[] data = new char[testSize];
for (int i = 0; i < data.length; i++) {
data[i] = (char) (start + r.nextInt(end));
}
return new String(data);
}
// WE DO THIS IF WE FIND AN ILLEGAL CHARACTER IN THE STRING
public void doThrow() {
throw new RuntimeException("Bzzzt -- Illegal Character!!");
}
/**
* 1. get random string of correct length 2. get tests (List<Jobber>) 3.
* perform tests repeatedly, shuffling each time
*/
List<Jobber> test(int size, int tries, Random random) throws Exception {
String data = makeTestString(size, 'A', 'Z');
List<Jobber> tests = makeTests(data);
List<Jobber> copy = new ArrayList<>(tests);
while (tries-- > 0) {
Collections.shuffle(copy, random);
for (Jobber ti : copy) {
ti.run();
}
}
// check to make sure all char counts the same
long runs = tests.get(0).runs;
long count = tests.get(0).chars;
for (Jobber ti : tests) {
if (ti.runs != runs && ti.chars != count) {
throw new Exception("Char counts should match if all correct algorithms");
}
}
return tests;
}
private void printHeadings(final int TRIES_PER_STRING_SIZE, final Random random) throws Exception {
System.out.print(" Size");
for (Jobber ti : test(0, TRIES_PER_STRING_SIZE, random)) {
System.out.printf("%9s", ti.name);
}
System.out.println("");
}
private void reportResults(int size, List<Jobber> tests) {
System.out.printf("%6d", size);
for (Jobber ti : tests) {
System.out.printf("%,9.2f", ti.nanosPerChar());
}
System.out.println("");
}
}