102 votes

Jouer un son arbitraire avec Android

Existe-t-il un moyen de faire en sorte qu'Android émette un son de fréquence arbitraire (autrement dit, je ne veux pas avoir de fichiers son préenregistrés) ?

J'ai regardé autour de moi et ToneGenerator est la seule chose que j'ai pu trouver qui s'en rapproche, mais il semble qu'il ne soit capable d'émettre que les tonalités DTMF standard.

Des idées ?

2 votes

Avez-vous trouvé une véritable solution ?

25 votes

Non, mais j'ai fini par ne pas faire le projet.

1 votes

@JeremyLogan Et vous avez reçu des commentaires négatifs positifs. lol.

117voto

Steve Pomeroy Points 3968

J'ai trouvé à l'origine cet exemple de code sur un blog, mais il avait des bugs qui généraient des sons horribles. J'ai corrigé les bugs et posté le code résultant ici. Il semble que cela fonctionne bien pour moi !

public class PlaySound extends Activity {
    // originally from http://marblemice.blogspot.com/2010/04/generate-and-play-tone-in-android.html
    // and modified by Steve Pomeroy <steve@staticfree.info>
    private final int duration = 3; // seconds
    private final int sampleRate = 8000;
    private final int numSamples = duration * sampleRate;
    private final double sample[] = new double[numSamples];
    private final double freqOfTone = 440; // hz

    private final byte generatedSnd[] = new byte[2 * numSamples];

    Handler handler = new Handler();

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
    }

    @Override
    protected void onResume() {
        super.onResume();

        // Use a new tread as this can take a while
        final Thread thread = new Thread(new Runnable() {
            public void run() {
                genTone();
                handler.post(new Runnable() {

                    public void run() {
                        playSound();
                    }
                });
            }
        });
        thread.start();
    }

    void genTone(){
        // fill out the array
        for (int i = 0; i < numSamples; ++i) {
            sample[i] = Math.sin(2 * Math.PI * i / (sampleRate/freqOfTone));
        }

        // convert to 16 bit pcm sound array
        // assumes the sample buffer is normalised.
        int idx = 0;
        for (final double dVal : sample) {
            // scale to maximum amplitude
            final short val = (short) ((dVal * 32767));
            // in 16 bit wav PCM, first byte is the low order byte
            generatedSnd[idx++] = (byte) (val & 0x00ff);
            generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);

        }
    }

    void playSound(){
        final AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                sampleRate, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, generatedSnd.length,
                AudioTrack.MODE_STATIC);
        audioTrack.write(generatedSnd, 0, generatedSnd.length);
        audioTrack.play();
    }
}

2 votes

Cette ligne est-elle correcte ? audioTrack.write(generatedSnd, 0, numSamples) ; ou devrait-elle être numSamples * 2 car il y a 2 octets par échantillon. De plus, la méthode d'écriture prend également un tableau de courts, alors quel est l'avantage de créer un tableau intermédiaire d'octets ?

2 votes

C'est en effet un excellent exemple, merci beaucoup. Cependant, j'ai trouvé un autre bug désagréable (si vous étendez le code), qui est : audioTrack.write(generatedSnd, 0, numSamples) devrait être audioTrack.write(generatedSnd, 0, 2*numSamples) ou mieux audioTrack.write(generatedSnd, 0, generatedSnd.length) ;

0 votes

L'exemple de code a été mis à jour sur la base des deux commentaires ci-dessus. Merci !

31voto

Xarph Points 529

Amélioration du code ci-dessus :

Ajoutez une rampe d'amplitude vers le haut et vers le bas pour éviter les clics.

Ajoutez du code pour déterminer quand la punaise a fini de jouer.

double duration = 1;            // seconds
double freqOfTone = 1000;       // hz
int sampleRate = 8000;          // a number

double dnumSamples = duration * sampleRate;
dnumSamples = Math.ceil(dnumSamples);
int numSamples = (int) dnumSamples;
double sample[] = new double[numSamples];
byte generatedSnd[] = new byte[2 * numSamples];

for (int i = 0; i < numSamples; ++i) {    // Fill the sample array
    sample[i] = Math.sin(freqOfTone * 2 * Math.PI * i / (sampleRate));
}

// convert to 16 bit pcm sound array
// assumes the sample buffer is normalized.
// convert to 16 bit pcm sound array
// assumes the sample buffer is normalised.
int idx = 0;
int i = 0 ;

int ramp = numSamples / 20 ;                                     // Amplitude ramp as a percent of sample count

for (i = 0; i< ramp; ++i) {                                      // Ramp amplitude up (to avoid clicks)
    double dVal = sample[i];
                                                                 // Ramp up to maximum
    final short val = (short) ((dVal * 32767 * i/ramp));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}

for (i = i; i< numSamples - ramp; ++i) {                         // Max amplitude for most of the samples
    double dVal = sample[i];
                                                                 // scale to maximum amplitude
    final short val = (short) ((dVal * 32767));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}

for (i = i; i< numSamples; ++i) {                                // Ramp amplitude down
    double dVal = sample[i];
                                                                 // Ramp down to zero
    final short val = (short) ((dVal * 32767 * (numSamples-i)/ramp ));
                                                                 // in 16 bit wav PCM, first byte is the low order byte
    generatedSnd[idx++] = (byte) (val & 0x00ff);
    generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
}

AudioTrack audioTrack = null;                                    // Get audio track
try {
    audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
        sampleRate, AudioFormat.CHANNEL_CONFIGURATION_MONO,
        AudioFormat.ENCODING_PCM_16BIT, (int)numSamples*2,
        AudioTrack.MODE_STATIC);
    audioTrack.write(generatedSnd, 0, generatedSnd.length);        // Load the track
    audioTrack.play();                                             // Play the track
}
catch (Exception e){
    RunTimeError("Error: " + e);
    return false;
}

int x =0;
do{                                                              // Monitor playback to find when done
    if (audioTrack != null) 
        x = audioTrack.getPlaybackHeadPosition(); 
    else 
        x = numSamples;
} while (x<numSamples);

if (audioTrack != null) audioTrack.release();                    // Track play done. Release track.

1 votes

Le principal changement était la montée et la descente de l'amplitude. Le code original commençait et finissait avec une amplitude maximale. Cela produisait des clics au début et à la fin de la tonalité. Ce code augmente l'amplitude de 0 à l'amplitude maximale sur les premiers 20% des échantillons. Il descend ensuite de la pleine amplitude à zéro sur les derniers 20% des échantillons. Les tonalités sont plus douces et beaucoup plus agréables. L'autre changement a été de surveiller la lecture de la tonalité et de ne pas continuer jusqu'à ce que la tonalité soit terminée.

0 votes

Je n'arrive pas à le faire fonctionner Je suis capable de faire fonctionner le premier mais je ne comprends pas vraiment comment le modifier par rapport à ce que vous avez fait ce serait vraiment utile car je cherche à me débarrasser du son du clic

3 votes

+1, mais le code dans cette réponse n'est pas près de compiler. Je l'ai implémenté correctement ici : gist.github.com/SuspendedPhan/7596139 Remplacez simplement la méthode genTone() de Steve par la mienne et vous obtiendrez l'effet de rampe.

5voto

CommonsWare Points 402670

Si vous pouvez trouver comment créer un flux PCM 16 bits de votre fréquence arbitraire, AudioTrack devrait faire l'affaire.

Ou bien, demandez-leur de vous appeler, et vous pourrez fredonner dans le téléphone... :-)

5voto

extreme Points 91

Comme il existe un bogue dans certaines anciennes versions d'Android qui provoque une fuite de mémoire lors de l'utilisation de MODE_STATIC, j'ai modifié la réponse de Xarph ci-dessus pour utiliser MODE_STREAM. J'espère que cela aidera certains.

public void playTone(double freqOfTone, double duration) {
 //double duration = 1000;                // seconds
 //   double freqOfTone = 1000;           // hz
    int sampleRate = 8000;              // a number

    double dnumSamples = duration * sampleRate;
    dnumSamples = Math.ceil(dnumSamples);
    int numSamples = (int) dnumSamples;
    double sample[] = new double[numSamples];
    byte generatedSnd[] = new byte[2 * numSamples];

    for (int i = 0; i < numSamples; ++i) {      // Fill the sample array
        sample[i] = Math.sin(freqOfTone * 2 * Math.PI * i / (sampleRate));
    }

    // convert to 16 bit pcm sound array
    // assumes the sample buffer is normalized.
    // convert to 16 bit pcm sound array
    // assumes the sample buffer is normalised.
    int idx = 0;
    int i = 0 ;

    int ramp = numSamples / 20 ;                                    // Amplitude ramp as a percent of sample count

    for (i = 0; i< ramp; ++i) {                                     // Ramp amplitude up (to avoid clicks)
        double dVal = sample[i];
                                                                    // Ramp up to maximum
        final short val = (short) ((dVal * 32767 * i/ramp));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }

    for (i = i; i< numSamples - ramp; ++i) {                        // Max amplitude for most of the samples
        double dVal = sample[i];
                                                                    // scale to maximum amplitude
        final short val = (short) ((dVal * 32767));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }

    for (i = i; i< numSamples; ++i) {                               // Ramp amplitude down
        double dVal = sample[i];
                                                                    // Ramp down to zero
        final short val = (short) ((dVal * 32767 * (numSamples-i)/ramp ));
                                                                    // in 16 bit wav PCM, first byte is the low order byte
        generatedSnd[idx++] = (byte) (val & 0x00ff);
        generatedSnd[idx++] = (byte) ((val & 0xff00) >>> 8);
    }

    AudioTrack audioTrack = null;                                   // Get audio track
    try {
         int bufferSize = AudioTrack.getMinBufferSize(sampleRate, AudioFormat.CHANNEL_OUT_MONO, AudioFormat.ENCODING_PCM_16BIT);
        audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
                sampleRate, AudioFormat.CHANNEL_OUT_MONO,
                AudioFormat.ENCODING_PCM_16BIT, bufferSize,
                AudioTrack.MODE_STREAM);
        audioTrack.play();                                          // Play the track
        audioTrack.write(generatedSnd, 0, generatedSnd.length);     // Load the track
    }
    catch (Exception e){
    }
    if (audioTrack != null) audioTrack.release();           // Track play done. Release track.
}

2voto

Singhak Points 911
    float synth_frequency = 440;
    int minSize = AudioTrack.getMinBufferSize(SAMPLE_RATE,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT);
AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
SAMPLE_RATE,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT,
minSize,
AudioTrack.MODE_STREAM);
audioTrack.play();
short[] buffer = new short[minSize];
float angle = 0;
while (true) 
{
    if (play)
    {
        for (int i = 0; i < buffer.length; i++)
        {
            float angular_frequency =
            (float)(2*Math.PI) * synth_frequency / SAMPLE_RATE;
            buffer[i] = (short)(Short.MAX_VALUE * ((float) Math.sin(angle)));
            angle += angular_frequency;
    }
        audioTrack.write(buffer, 0, buffer.length);
    } 

// Vous pouvez ajouter une valeur arbitraire dans synth_frequency pour obtenir un son différent ; par exemple, vous pouvez ajouter une variable aléatoire pour obtenir un son.

0 votes

Vous convertissez tout ça en un court métrage, à la fin. Il n'y a aucune raison de convertir l'angle en flottant. Les calculs en double sont aussi rapides et ne requièrent pas un grand nombre de castings.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X