Considérer cette monade, qui est isomorphe à l' (Bool ->)
monade:
data Pair a = P a a
instance Functor Pair where
fmap f (P x y) = P (f x) (f y)
instance Monad Pair where
return x = P x x
P a b >>= f = P x y
where P x _ = f a
P _ y = f b
et de composer avec l' Maybe
monade:
newtype Bad a = B (Maybe (Pair a))
Je demande qu' Bad
ne peut pas être une monade.
Partielle, la preuve:
Il n'y a qu'une façon de définir fmap
satisfait fmap id = id
:
instance Functor Bad where
fmap f (B x) = B $ fmap (fmap f) x
Rappel de la monade lois:
(1) join (return x) = x
(2) join (fmap return x) = x
(3) join (join x) = join (fmap join x)
Pour la définition de l' return x
, nous avons deux choix: B Nothing
ou B (Just (P x x))
. Il est clair que pour avoir un espoir de revenir x
de (1) et (2), nous ne pouvons pas jeter x
, nous avons donc à choisir la deuxième option.
return' :: a -> Bad a
return' x = B (Just (P x x))
Que les feuilles join
. Puisqu'il y a seulement quelques entrées possibles, nous pouvons faire un cas pour chacun:
join :: Bad (Bad a) -> Bad a
(A) join (B Nothing) = ???
(B) join (B (Just (P (B Nothing) (B Nothing)))) = ???
(C) join (B (Just (P (B (Just (P x1 x2))) (B Nothing)))) = ???
(D) join (B (Just (P (B Nothing) (B (Just (P x1 x2)))))) = ???
(E) join (B (Just (P (B (Just (P x1 x2))) (B (Just (P x3 x4)))))) = ???
Depuis la sortie est de type Bad a
, les seules options sont B Nothing
ou B (Just (P y1 y2))
où y1
, y2
doivent être choisis à partir d' x1 ... x4
.
Dans les cas (A) et (B), nous n'avons pas de valeurs de type a
, donc nous sommes obligés de revenir B Nothing
dans les deux cas.
Cas (E) est déterminé par le (1) et (2) monade lois:
-- apply (1) to (B (Just (P y1 y2)))
join (return' (B (Just (P y1 y2))))
= -- using our definition of return'
join (B (Just (P (B (Just (P y1 y2))) (B (Just (P y1 y2))))))
= -- from (1) this should equal
B (Just (P y1 y2))
Pour revenir B (Just (P y1 y2))
dans le cas (E), cela signifie que nous devons ramasser y1
soit à partir d' x1
ou x3
,
et y2
soit à partir d' x2
ou x4
.
-- apply (2) to (B (Just (P y1 y2)))
join (fmap return' (B (Just (P y1 y2))))
= -- def of fmap
join (B (Just (P (return y1) (return y2))))
= -- def of return
join (B (Just (P (B (Just (P y1 y1))) (B (Just (P y2 y2))))))
= -- from (2) this should equal
B (Just (P y1 y2))
De même, il dit que nous devons chercher y1
soit à partir d' x1
ou x2
, et y2
soit à partir d' x3
ou x4
. En combinant les deux,
nous déterminons que le côté droit de (E) B (Just (P x1 x4))
.
Jusqu'à présent, c'est du tout bon, mais le problème survient lorsque vous essayez de remplir la droite, pour (C) et (D).
Il y a 5 possible à droite, pour chacun d'eux, et aucun des combinaisons de travail. Je n'ai pas un bel argument pour cela, mais j'ai un programme que de manière exhaustive teste toutes les combinaisons:
{-# LANGUAGE ImpredicativeTypes, ScopedTypeVariables #-}
import Control.Monad (guard)
data Pair a = P a a
deriving (Eq, Show)
instance Functor Pair where
fmap f (P x y) = P (f x) (f y)
instance Monad Pair where
return x = P x x
P a b >>= f = P x y
where P x _ = f a
P _ y = f b
newtype Bad a = B (Maybe (Pair a))
deriving (Eq, Show)
instance Functor Bad where
fmap f (B x) = B $ fmap (fmap f) x
-- The only definition that could possibly work.
unit :: a -> Bad a
unit x = B (Just (P x x))
-- Number of possible definitions of join for this type. If this equals zero, no monad for you!
joins :: Integer
joins = sum $ do
-- Try all possible ways of handling cases 3 and 4 in the definition of join below.
let ways = [ \_ _ -> B Nothing
, \a b -> B (Just (P a a))
, \a b -> B (Just (P a b))
, \a b -> B (Just (P b a))
, \a b -> B (Just (P b b)) ] :: [forall a. a -> a -> Bad a]
c3 :: forall a. a -> a -> Bad a <- ways
c4 :: forall a. a -> a -> Bad a <- ways
let join :: forall a. Bad (Bad a) -> Bad a
join (B Nothing) = B Nothing -- no choice
join (B (Just (P (B Nothing) (B Nothing)))) = B Nothing -- again, no choice
join (B (Just (P (B (Just (P x1 x2))) (B Nothing)))) = c3 x1 x2
join (B (Just (P (B Nothing) (B (Just (P x3 x4)))))) = c4 x3 x4
join (B (Just (P (B (Just (P x1 x2))) (B (Just (P x3 x4)))))) = B (Just (P x1 x4)) -- derived from monad laws
-- We've already learnt all we can from these two, but I decided to leave them in anyway.
guard $ all (\x -> join (unit x) == x) bad1
guard $ all (\x -> join (fmap unit x) == x) bad1
-- This is the one that matters
guard $ all (\x -> join (join x) == join (fmap join x)) bad3
return 1
main = putStrLn $ show joins ++ " combinations work."
-- Functions for making all the different forms of Bad values containing distinct Ints.
bad1 :: [Bad Int]
bad1 = map fst (bad1' 1)
bad3 :: [Bad (Bad (Bad Int))]
bad3 = map fst (bad3' 1)
bad1' :: Int -> [(Bad Int, Int)]
bad1' n = [(B Nothing, n), (B (Just (P n (n+1))), n+2)]
bad2' :: Int -> [(Bad (Bad Int), Int)]
bad2' n = (B Nothing, n) : do
(x, n') <- bad1' n
(y, n'') <- bad1' n'
return (B (Just (P x y)), n'')
bad3' :: Int -> [(Bad (Bad (Bad Int)), Int)]
bad3' n = (B Nothing, n) : do
(x, n') <- bad2' n
(y, n'') <- bad2' n'
return (B (Just (P x y)), n'')