1) Au début de filtrer vos données SQLite avec une bonne approximation et de la diminution de la quantité de données que vous devez évaluer dans votre code java. Utilisez la procédure suivante pour cette fin:
Pour avoir un déterministe seuil et plus précis filtre sur les données, Il est préférable de calculer les 4 emplacements qui sont en radius
compteur du nord, de l'ouest à l'est et au sud de votre point central dans votre code java et ensuite vérifier facilement en moins et plus que les opérateurs SQL (>, <) afin de déterminer si vos points dans la base de données sont dans un rectangle ou non.
La méthode calculateDerivedPosition(...)
calcule ces points (p1, p2, p3, p4 dans l'image).
/**
* Calculates the end-point from a given source at a given range (meters)
* and bearing (degrees). This methods uses simple geometry equations to
* calculate the end-point.
*
* @param point
* Point of origin
* @param range
* Range in meters
* @param bearing
* Bearing in degrees
* @return End-point from the source given the desired range and bearing.
*/
public static PointF calculateDerivedPosition(PointF point,
double range, double bearing)
{
double EarthRadius = 6371000; // m
double latA = Math.toRadians(point.x);
double lonA = Math.toRadians(point.y);
double angularDistance = range / EarthRadius;
double trueCourse = Math.toRadians(bearing);
double lat = Math.asin(
Math.sin(latA) * Math.cos(angularDistance) +
Math.cos(latA) * Math.sin(angularDistance)
* Math.cos(trueCourse));
double dlon = Math.atan2(
Math.sin(trueCourse) * Math.sin(angularDistance)
* Math.cos(latA),
Math.cos(angularDistance) - Math.sin(latA) * Math.sin(lat));
double lon = ((lonA + dlon + Math.PI) % (Math.PI * 2)) - Math.PI;
lat = Math.toDegrees(lat);
lon = Math.toDegrees(lon);
PointF newPoint = new PointF((float) lat, (float) lon);
return newPoint;
}
Et maintenant créer votre requête:
PointF center = new PointF(x, y);
final double mult = 1; // mult = 1.1; is more reliable
PointF p1 = calculateDerivedPosition(center, mult * radius, 0);
PointF p2 = calculateDerivedPosition(center, mult * radius, 90);
PointF p3 = calculateDerivedPosition(center, mult * radius, 180);
PointF p4 = calculateDerivedPosition(center, mult * radius, 270);
strWhere = " WHERE "
+ COL_X + " > " + String.valueOf(p3.x) + " AND "
+ COL_X + " < " + String.valueOf(p1.x) + " AND "
+ COL_Y + " < " + String.valueOf(p2.y) + " AND "
+ COL_Y + " > " + String.valueOf(p4.y)
Si vous avez des données qui sont à proximité de votre point central avec une bonne approximation.
2) Maintenant, vous pouvez faire une boucle sur ces données filtrées et de déterminer si elles sont vraiment à proximité de votre lieu (dans le cercle) ou non en utilisant les méthodes suivantes:
public static boolean pointIsInCircle(PointF pointForCheck, PointF center,
double radius) {
if (getDistanceBetweenTwoPoints(pointForCheck, center) <= radius)
return true;
else
return false;
}
public static double getDistanceBetweenTwoPoints(PointF p1, PointF p2) {
double R = 6371000; // m
double dLat = Math.toRadians(p2.x - p1.x);
double dLon = Math.toRadians(p2.y - p1.y);
double lat1 = Math.toRadians(p1.x);
double lat2 = Math.toRadians(p2.x);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.sin(dLon / 2)
* Math.sin(dLon / 2) * Math.cos(lat1) * Math.cos(lat2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
double d = R * c;
return d;
}
Profitez-en!
J'ai utilisé et personnalisé cette référence et l'a achevé.