Je pense que j'utilise plyr incorrectement. Quelqu'un pourrait-il me dire si ce code plyr est 'efficace'?
require(plyr)
plyr <- function(dd) ddply(dd, .(price), summarise, ss=sum(volume))
Un peu de contexte: J'ai quelques gros problèmes d'agrégation et j'ai remarqué qu'ils prenaient chacun du temps. En essayant de résoudre les problèmes, je me suis intéressé aux performances de différentes procédures d'agrégation en R.
J'ai testé quelques méthodes d'agrégation - et je me suis retrouvé à attendre toute la journée.
Quand j'ai enfin reçu les résultats, j'ai découvert un énorme écart entre la méthode plyr et les autres - ce qui me fait penser que j'ai fait quelque chose de complètement faux.
J'ai exécuté le code suivant (j'ai pensé jeter un œil au nouveau package dataframe pendant que j'y étais):
require(plyr)
require(data.table)
require(dataframe)
require(rbenchmark)
require(xts)
plyr <- function(dd) ddply(dd, .(price), summarise, ss=sum(volume))
t.apply <- function(dd) unlist(tapply(dd$volume, dd$price, sum))
t.apply.x <- function(dd) unlist(tapply(dd[,2], dd[,1], sum))
l.apply <- function(dd) unlist(lapply(split(dd$volume, dd$price), sum))
l.apply.x <- function(dd) unlist(lapply(split(dd[,2], dd[,1]), sum))
b.y <- function(dd) unlist(by(dd$volume, dd$price, sum))
b.y.x <- function(dd) unlist(by(dd[,2], dd[,1], sum))
agg <- function(dd) aggregate(dd$volume, list(dd$price), sum)
agg.x <- function(dd) aggregate(dd[,2], list(dd[,1]), sum)
dtd <- function(dd) dd[, sum(volume), by=(price)]
obs <- c(5e1, 5e2, 5e3, 5e4, 5e5, 5e6, 5e6, 5e7, 5e8)
timS <- timeBasedSeq('20110101 083000/20120101 083000')
bmkRL <- list(NULL)
for (i in 1:5){
tt <- timS[1:obs[i]]
for (j in 1:8){
pxl <- seq(0.9, 1.1, by= (1.1 - 0.9)/floor(obs[i]/(11-j)))
px <- sample(pxl, length(tt), replace=TRUE)
vol <- rnorm(length(tt), 1000, 100)
d.df <- base::data.frame(time=tt, price=px, volume=vol)
d.dfp <- dataframe::data.frame(time=tt, price=px, volume=vol)
d.matrix <- as.matrix(d.df[,-1])
d.dt <- data.table(d.df)
listLabel <- paste('i=',i, 'j=',j)
bmkRL[[listLabel]] <- benchmark(plyr(d.df), plyr(d.dfp), t.apply(d.df),
t.apply(d.dfp), t.apply.x(d.matrix),
l.apply(d.df), l.apply(d.dfp), l.apply.x(d.matrix),
b.y(d.df), b.y(d.dfp), b.y.x(d.matrix), agg(d.df),
agg(d.dfp), agg.x(d.matrix), dtd(d.dt),
columns =c('test', 'elapsed', 'relative'),
replications = 10,
order = 'elapsed')
}
}
Le test devait aller jusqu'à 5e8, mais cela a pris trop de temps - surtout à cause de plyr. Le tableau final à 5e5 montre le problème:
$`i= 5 j= 8`
test elapsed relative
15 dtd(d.dt) 4.156 1.000000
6 l.apply(d.df) 15.687 3.774543
7 l.apply(d.dfp) 16.066 3.865736
8 l.apply.x(d.matrix) 16.659 4.008422
4 t.apply(d.dfp) 21.387 5.146054
3 t.apply(d.df) 21.488 5.170356
5 t.apply.x(d.matrix) 22.014 5.296920
13 agg(d.dfp) 32.254 7.760828
14 agg.x(d.matrix) 32.435 7.804379
12 agg(d.df) 32.593 7.842397
10 b.y(d.dfp) 98.006 23.581809
11 b.y.x(d.matrix) 98.134 23.612608
9 b.y(d.df) 98.337 23.661453
1 plyr(d.df) 9384.135 2257.972810
2 plyr(d.dfp) 9384.448 2258.048123
Est-ce correct? Pourquoi plyr est-il 2250x plus lent que data.table
? Et pourquoi l'utilisation du nouveau package de dataframe n'a-t-elle pas fait de différence?
Les informations de la session sont:
> sessionInfo()
R version 2.15.1 (2012-06-22)
Plateforme: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
packages de base attachés:
[1] stats graphics grDevices utils datasets methods base
autres packages attachés:
[1] xts_0.8-6 zoo_1.7-7 rbenchmark_0.3 dataframe_2.5 data.table_1.8.1 plyr_1.7.1
chargé via un espace de noms (et non attaché):
[1] grid_2.15.1 lattice_0.20-6 tools_2.15.1