67 votes

Comment utiliser efficacement Rprof dans R ?

Je souhaiterais savoir s'il est possible d'obtenir un profil de R -Code d'une manière qui est similaire à matlab Profiler. C'est-à-dire pour savoir quels sont les numéros de ligne qui sont particulièrement lents.

Ce que j'ai réussi à faire jusqu'à présent n'est pas satisfaisant. J'ai utilisé Rprof pour me faire un fichier de profil. En utilisant summaryRprof J'obtiens quelque chose comme ce qui suit :

$by.self
                  self.time self.pct total.time total.pct
[.data.frame               0.72     10.1       1.84      25.8
inherits                   0.50      7.0       1.10      15.4
data.frame                 0.48      6.7       4.86      68.3
unique.default             0.44      6.2       0.48       6.7
deparse                    0.36      5.1       1.18      16.6
rbind                      0.30      4.2       2.22      31.2
match                      0.28      3.9       1.38      19.4
[<-.factor                 0.28      3.9       0.56       7.9
levels                     0.26      3.7       0.34       4.8
NextMethod                 0.22      3.1       0.82      11.5
...

y

$by.total
                      total.time total.pct self.time self.pct
data.frame                  4.86      68.3      0.48      6.7
rbind                       2.22      31.2      0.30      4.2
do.call                     2.22      31.2      0.00      0.0
[                           1.98      27.8      0.16      2.2
[.data.frame                1.84      25.8      0.72     10.1
match                       1.38      19.4      0.28      3.9
%in%                        1.26      17.7      0.14      2.0
is.factor                   1.20      16.9      0.10      1.4
deparse                     1.18      16.6      0.36      5.1
...

Pour être honnête, à partir de ce résultat, je ne vois pas où sont mes goulots d'étranglement parce que (a) j'utilise data.frame assez souvent et (b) je n'utilise jamais "e.g.", deparse . En outre, ce qui est [ ?

Alors j'ai essayé le livre de Hadley Wickham. profr mais il n'était pas plus utile au vu du graphique suivant : alt text

Existe-t-il un moyen plus pratique de voir quels numéros de ligne et quels appels de fonction particuliers sont lents ?
Ou bien, existe-t-il une littérature que je devrais consulter ?

Tout conseil est le bienvenu.

EDIT 1 :
Sur la base du commentaire de Hadley, je vais coller le code de mon script ci-dessous et la version graphique de base du tracé. Mais notez, que ma question n'est pas liée à ce script spécifique. C'est juste un script aléatoire que j'ai récemment écrit. Je cherche un moyen général de trouver les goulots d'étranglement et d'accélérer le processus. R -code.

Les données ( x ) ressemble à ceci :

type      word    response    N   Classification  classN
Abstract  ANGER   bitter      1   3a              3a
Abstract  ANGER   control     1   1a              1a
Abstract  ANGER   father      1   3a              3a
Abstract  ANGER   flushed     1   3a              3a
Abstract  ANGER   fury        1   1c              1c
Abstract  ANGER   hat         1   3a              3a
Abstract  ANGER   help        1   3a              3a
Abstract  ANGER   mad         13  3a              3a
Abstract  ANGER   management  2   1a              1a
... until row 1700

Le script (avec de courtes explications) est le suivant :

Rprof("profile1.out")

# A new dataset is produced with each line of x contained x$N times 
y <- vector('list',length(x[,1]))
for (i in 1:length(x[,1])) {
  y[[i]] <- data.frame(rep(x[i,1],x[i,"N"]),rep(x[i,2],x[i,"N"]),rep(x[i,3],x[i,"N"]),rep(x[i,4],x[i,"N"]),rep(x[i,5],x[i,"N"]),rep(x[i,6],x[i,"N"]))
}
all <- do.call('rbind',y)
colnames(all) <- colnames(x)

# create a dataframe out of a word x class table
table_all <- table(all$word,all$classN)
dataf.all <- as.data.frame(table_all[,1:length(table_all[1,])])
dataf.all$words <- as.factor(rownames(dataf.all))
dataf.all$type <- "no"
# get type of the word.
words <- levels(dataf.all$words)
for (i in 1:length(words)) {
  dataf.all$type[i] <- as.character(all[pmatch(words[i],all$word),"type"])
}
dataf.all$type <- as.factor(dataf.all$type)
dataf.all$typeN <- as.numeric(dataf.all$type)

# aggregate response categories
dataf.all$c1 <- apply(dataf.all[,c("1a","1b","1c","1d","1e","1f")],1,sum)
dataf.all$c2 <- apply(dataf.all[,c("2a","2b","2c")],1,sum)
dataf.all$c3 <- apply(dataf.all[,c("3a","3b")],1,sum)

Rprof(NULL)

library(profr)
ggplot.profr(parse_rprof("profile1.out"))

Les données finales ressemblent à ceci :

1a    1b  1c  1d  1e  1f  2a  2b  2c  3a  3b  pa  words   type    typeN   c1  c2  c3  pa
3 0   8   0   0   0   0   0   0   24  0   0   ANGER   Abstract    1   11  0   24  0
6 0   4   0   1   0   0   11  0   13  0   0   ANXIETY Abstract    1   11  11  13  0
2 11  1   0   0   0   0   4   0   17  0   0   ATTITUDE    Abstract    1   14  4   17  0
9 18  0   0   0   0   0   0   0   0   8   0   BARREL  Concrete    2   27  0   8   0
0 1   18  0   0   0   0   4   0   12  0   0   BELIEF  Abstract    1   19  4   12  0

Le graphique de base : alt text

L'exécution du script aujourd'hui a également modifié un peu le graphique ggplot2 (essentiellement seulement les étiquettes), voir ici.

51voto

Henrik Points 4728

Alerter les lecteurs d'hier Dernières nouvelles ( R 3.0.0 est enfin sorti) ont peut-être remarqué quelque chose d'intéressant qui est directement lié à cette question :

  • Le profilage via Rprof() enregistre maintenant facultativement des informations au niveau des instructions, et non plus seulement au niveau des fonctions.

Et en effet, cette nouvelle fonctionnalité répond à ma question et je vais vous montrer comment.


Disons que nous voulons comparer si la vectorisation et la pré-affectation sont vraiment meilleures que les bonnes vieilles boucles for et la construction incrémentielle de données pour calculer une statistique sommaire telle que la moyenne. Le code, relativement stupide, est le suivant :

# create big data frame:
n <- 1000
x <- data.frame(group = sample(letters[1:4], n, replace=TRUE), condition = sample(LETTERS[1:10], n, replace = TRUE), data = rnorm(n))

# reasonable operations:
marginal.means.1 <- aggregate(data ~ group + condition, data = x, FUN=mean)

# unreasonable operations:
marginal.means.2 <- marginal.means.1[NULL,]

row.counter <- 1
for (condition in levels(x$condition)) {
  for (group in levels(x$group)) {  
    tmp.value <- 0
    tmp.length <- 0
    for (c in 1:nrow(x)) {
      if ((x[c,"group"] == group) & (x[c,"condition"] == condition)) {
        tmp.value <- tmp.value + x[c,"data"]
        tmp.length <- tmp.length + 1
      }
    }
    marginal.means.2[row.counter,"group"] <- group 
    marginal.means.2[row.counter,"condition"] <- condition
    marginal.means.2[row.counter,"data"] <- tmp.value / tmp.length
    row.counter <- row.counter + 1
  }
}

# does it produce the same results?
all.equal(marginal.means.1, marginal.means.2)

Pour utiliser ce code avec Rprof nous devons parse il. C'est-à-dire qu'il faut l'enregistrer dans un fichier et l'appeler à partir de là. Je l'ai donc téléchargé sur pastebin mais cela fonctionne exactement de la même manière avec les fichiers locaux.

Maintenant, nous

  • il suffit de créer un fichier de profil et d'indiquer que l'on veut enregistrer le numéro de ligne,
  • source le code avec l'incroyable combinaison eval(parse(..., keep.source = TRUE)) (apparemment l'infâme fortune(106) ne s'applique pas ici, car je n'ai pas trouvé d'autre moyen)
  • arrêter le profilage et indiquer que nous voulons la sortie basée sur les numéros de ligne.

Le code est :

Rprof("profile1.out", line.profiling=TRUE)
eval(parse(file = "http://pastebin.com/download.php?i=KjdkSVZq", keep.source=TRUE))
Rprof(NULL)

summaryRprof("profile1.out", lines = "show")

Ce qui donne :

$by.self
                           self.time self.pct total.time total.pct
download.php?i=KjdkSVZq#17      8.04    64.11       8.04     64.11
<no location>                   4.38    34.93       4.38     34.93
download.php?i=KjdkSVZq#16      0.06     0.48       0.06      0.48
download.php?i=KjdkSVZq#18      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#23      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#6       0.02     0.16       0.02      0.16

$by.total
                           total.time total.pct self.time self.pct
download.php?i=KjdkSVZq#17       8.04     64.11      8.04    64.11
<no location>                    4.38     34.93      4.38    34.93
download.php?i=KjdkSVZq#16       0.06      0.48      0.06     0.48
download.php?i=KjdkSVZq#18       0.02      0.16      0.02     0.16
download.php?i=KjdkSVZq#23       0.02      0.16      0.02     0.16
download.php?i=KjdkSVZq#6        0.02      0.16      0.02     0.16

$by.line
                           self.time self.pct total.time total.pct
<no location>                   4.38    34.93       4.38     34.93
download.php?i=KjdkSVZq#6       0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#16      0.06     0.48       0.06      0.48
download.php?i=KjdkSVZq#17      8.04    64.11       8.04     64.11
download.php?i=KjdkSVZq#18      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#23      0.02     0.16       0.02      0.16

$sample.interval
[1] 0.02

$sampling.time
[1] 12.54

Vérification de la code source nous dit que la ligne problématique (#17) est bien la stupide if -dans la boucle for. En comparaison, il n'y a pratiquement pas de temps pour calculer la même chose en utilisant le code vectoriel (ligne 6).

Je ne l'ai pas encore essayé avec une sortie graphique, mais je suis déjà très impressionné par ce que j'ai obtenu jusqu'à présent.

11voto

Noam Ross Points 865

Mise à jour : Cette fonction a été réécrite pour gérer les numéros de ligne. Elle est sur github aquí .

J'ai écrit cette fonction pour analyser le fichier à partir de Rprof et de produire un tableau de résultats un peu plus clair que le tableau suivant summaryRprof . Il affiche la pile complète des fonctions (et les numéros de ligne si line.profiling=TRUE ), et leur contribution relative au temps d'exécution :

proftable <- function(file, lines=10) {
# require(plyr)
  interval <- as.numeric(strsplit(readLines(file, 1), "=")[[1L]][2L])/1e+06
  profdata <- read.table(file, header=FALSE, sep=" ", comment.char = "",
                         colClasses="character", skip=1, fill=TRUE,
                         na.strings="")
  filelines <- grep("#File", profdata[,1])
  files <- aaply(as.matrix(profdata[filelines,]), 1, function(x) {
                        paste(na.omit(x), collapse = " ") })
  profdata <- profdata[-filelines,]
  total.time <- interval*nrow(profdata)
  profdata <- as.matrix(profdata[,ncol(profdata):1])
  profdata <- aaply(profdata, 1, function(x) {
                      c(x[(sum(is.na(x))+1):length(x)],
                        x[seq(from=1,by=1,length=sum(is.na(x)))])
              })
  stringtable <- table(apply(profdata, 1, paste, collapse=" "))
  uniquerows <- strsplit(names(stringtable), " ")
  uniquerows <- llply(uniquerows, function(x) replace(x, which(x=="NA"), NA))
  dimnames(stringtable) <- NULL
  stacktable <- ldply(uniquerows, function(x) x)
  stringtable <- stringtable/sum(stringtable)*100
  stacktable <- data.frame(PctTime=stringtable[], stacktable)
  stacktable <- stacktable[order(stringtable, decreasing=TRUE),]
  rownames(stacktable) <- NULL
  stacktable <- head(stacktable, lines)
  na.cols <- which(sapply(stacktable, function(x) all(is.na(x))))
  stacktable <- stacktable[-na.cols]
  parent.cols <- which(sapply(stacktable, function(x) length(unique(x)))==1)
  parent.call <- paste0(paste(stacktable[1,parent.cols], collapse = " > ")," >")
  stacktable <- stacktable[,-parent.cols]
  calls <- aaply(as.matrix(stacktable[2:ncol(stacktable)]), 1, function(x) {
                   paste(na.omit(x), collapse= " > ")
                     })
  stacktable <- data.frame(PctTime=stacktable$PctTime, Call=calls)
  frac <- sum(stacktable$PctTime)
  attr(stacktable, "total.time") <- total.time
  attr(stacktable, "parent.call") <- parent.call
  attr(stacktable, "files") <- files
  attr(stacktable, "total.pct.time") <- frac
  cat("\n")
  print(stacktable, row.names=FALSE, right=FALSE, digits=3)
  cat("\n")
  cat(paste(files, collapse="\n"))
  cat("\n")
  cat(paste("\nParent Call:", parent.call))
  cat(paste("\n\nTotal Time:", total.time, "seconds\n"))
  cat(paste0("Percent of run time represented: ", format(frac, digits=3)), "%")

  invisible(stacktable)
}

En exécutant cette opération sur le fichier d'exemple d'Henrik, j'obtiens ceci :

> Rprof("profile1.out", line.profiling=TRUE)
> source("http://pastebin.com/download.php?i=KjdkSVZq")
> Rprof(NULL)
> proftable("profile1.out", lines=10)

 PctTime Call                                                      
 20.47   1#17 > [ > 1#17 > [.data.frame                            
  9.73   1#17 > [ > 1#17 > [.data.frame > [ > [.factor             
  8.72   1#17 > [ > 1#17 > [.data.frame > [ > [.factor > NextMethod
  8.39   == > Ops.factor                                           
  5.37   ==                                                        
  5.03   == > Ops.factor > noNA.levels > levels                    
  4.70   == > Ops.factor > NextMethod                              
  4.03   1#17 > [ > 1#17 > [.data.frame > [ > [.factor > levels    
  4.03   1#17 > [ > 1#17 > [.data.frame > dim                      
  3.36   1#17 > [ > 1#17 > [.data.frame > length                   

#File 1: http://pastebin.com/download.php?i=KjdkSVZq

Parent Call: source > withVisible > eval > eval >

Total Time: 5.96 seconds
Percent of run time represented: 73.8 %

Notez que le "Parent Call" s'applique à toutes les piles représentées sur la table. Cela est utile lorsque votre IDE ou tout autre outil qui appelle votre code l'intègre dans un ensemble de fonctions.

3voto

Mike Dunlavey Points 25419

J'ai actuellement R désinstallé ici, mais dans SPlus vous pouvez interrompre l'exécution avec la touche Escape, et ensuite faire traceback() qui vous montrera la pile d'appels. Cela devrait vous permettre d'utiliser cette méthode pratique .

Voici quelques raisons pour lesquelles des outils basés sur les mêmes concepts que gprof ne sont pas très bons pour localiser les problèmes de performance.

3voto

Alex W Points 3146

Une solution différente découle d'une question différente : comment utiliser efficacement library(profr) en R :

Par exemple :

install.packages("profr")
devtools::install_github("alexwhitworth/imputation")

x <- matrix(rnorm(1000), 100)
x[x>1] <- NA
library(imputation)
library(profr)
a <- profr(kNN_impute(x, k=5, q=2), interval= 0.005)

Il ne semble pas (du moins à mes yeux) que les intrigues soient d'une quelconque utilité ici (par ex. plot(a) ). Mais la structure de données elle-même semble suggérer une solution :

R> head(a, 10)
   level g_id t_id                f start   end n  leaf  time     source
9      1    1    1       kNN_impute 0.005 0.190 1 FALSE 0.185 imputation
10     2    1    1        var_tests 0.005 0.010 1 FALSE 0.005       <NA>
11     2    2    1            apply 0.010 0.190 1 FALSE 0.180       base
12     3    1    1         var.test 0.005 0.010 1 FALSE 0.005      stats
13     3    2    1              FUN 0.010 0.110 1 FALSE 0.100       <NA>
14     3    2    2              FUN 0.115 0.190 1 FALSE 0.075       <NA>
15     4    1    1 var.test.default 0.005 0.010 1 FALSE 0.005       <NA>
16     4    2    1           sapply 0.010 0.040 1 FALSE 0.030       base
17     4    3    1    dist_q.matrix 0.040 0.045 1 FALSE 0.005 imputation
18     4    4    1           sapply 0.045 0.075 1 FALSE 0.030       base

Solution à itération unique :

C'est-à-dire que la structure de données suggère l'utilisation de tapply pour résumer les données. Ceci peut être fait assez simplement pour une seule exécution de profr::profr

t <- tapply(a$time, paste(a$source, a$f, sep= "::"), sum)
t[order(t)] # time / function
R> round(t[order(t)] / sum(t), 4) # percentage of total time / function

base::!                    base::%in%                       base::|           base::anyDuplicated 
                       0.0015                        0.0015                        0.0015                        0.0015 
                      base::c                 base::deparse                     base::get                   base::match 
                       0.0015                        0.0015                        0.0015                        0.0015 
                   base::mget                     base::min                       base::t                   methods::el 
                       0.0015                        0.0015                        0.0015                        0.0015 
          methods::getGeneric        NA::.findMethodInTable               NA::.getGeneric      NA::.getGenericFromCache 
                       0.0015                        0.0015                        0.0015                        0.0015 
NA::.getGenericFromCacheTable                   NA::.identC             NA::.newSignature        NA::.quickCoerceSelect 
                       0.0015                        0.0015                        0.0015                        0.0015 
                NA::.sigLabel          NA::var.test.default                 NA::var_tests               stats::var.test 
                       0.0015                        0.0015                        0.0015                        0.0015 
                  base::paste                 methods::as<-     NA::.findInheritedMethods        NA::.getClassFromCache 
                       0.0030                        0.0030                        0.0030                        0.0030 
               NA::doTryCatch              NA::tryCatchList               NA::tryCatchOne               base::crossprod 
                       0.0030                        0.0030                        0.0030                        0.0045 
                    base::try                base::tryCatch          methods::getClassDef      methods::possibleExtends 
                       0.0045                        0.0045                        0.0045                        0.0045 
          methods::loadMethod                   methods::is     imputation::dist_q.matrix          methods::validObject 
                       0.0075                        0.0090                        0.0120                        0.0136 
       NA::.findNextFromTable        methods::addNextMethod               NA::.nextMethod                  base::lapply 
                       0.0166                        0.0346                        0.0361                        0.0392 
                 base::sapply     imputation::impute_fn_knn                  methods::new        imputation::kNN_impute 
                       0.0392                        0.0392                        0.0437                        0.0557 
      methods::callNextMethod      kernlab::as.kernelMatrix                   base::apply         kernlab::kernelMatrix 
                       0.0572                        0.0633                        0.0663                        0.0753 
          methods::initialize                       NA::FUN         base::standardGeneric 
                       0.0798                        0.0994                        0.1325 

A partir de là, je peux voir que les plus gros consommateurs de temps sont kernlab::kernelMatrix et les frais généraux de R pour les classes et les génériques S4.

Préféré :

Je note que, compte tenu de la nature stochastique du processus d'échantillonnage, je préfère utiliser des moyennes pour obtenir une image plus robuste du profil temporel :

prof_list <- replicate(100, profr(kNN_impute(x, k=5, q=2), 
    interval= 0.005), simplify = FALSE)

fun_timing <- vector("list", length= 100)
for (i in 1:100) {
  fun_timing[[i]] <- tapply(prof_list[[i]]$time, paste(prof_list[[i]]$source, prof_list[[i]]$f, sep= "::"), sum)
}

# Here is where the stochastic nature of the profiler complicates things.
# Because of randomness, each replication may have slightly different 
# functions called during profiling
sapply(fun_timing, function(x) {length(names(x))})

# we can also see some clearly odd replications (at least in my attempt)
> sapply(fun_timing, sum)
[1]    2.820    5.605    2.325    2.895    3.195    2.695    2.495    2.315    2.005    2.475    4.110    2.705    2.180    2.760
 [15] 3130.240    3.435    7.675    7.155    5.205    3.760    7.335    7.545    8.155    8.175    6.965    5.820    8.760    7.345
 [29]    9.815    7.965    6.370    4.900    5.720    4.530    6.220    3.345    4.055    3.170    3.725    7.780    7.090    7.670
 [43]    5.400    7.635    7.125    6.905    6.545    6.855    7.185    7.610    2.965    3.865    3.875    3.480    7.770    7.055
 [57]    8.870    8.940   10.130    9.730    5.205    5.645    3.045    2.535    2.675    2.695    2.730    2.555    2.675    2.270
 [71]    9.515    4.700    7.270    2.950    6.630    8.370    9.070    7.950    3.250    4.405    3.475    6.420 2948.265    3.470
 [85]    3.320    3.640    2.855    3.315    2.560    2.355    2.300    2.685    2.855    2.540    2.480    2.570    3.345    2.145
 [99]    2.620    3.650

Suppression des réplications inhabituelles et conversion en data.frame s :

fun_timing <- fun_timing[-c(15,83)]
fun_timing2 <- lapply(fun_timing, function(x) {
  ret <- data.frame(fun= names(x), time= x)
  dimnames(ret)[[1]] <- 1:nrow(ret)
  return(ret)
})

Fusionner les réplications (cela pourrait certainement être plus rapide) et examiner les résultats :

# function for merging DF's in a list
merge_recursive <- function(list, ...) {
  n <- length(list)
  df <- data.frame(list[[1]])
  for (i in 2:n) {
    df <- merge(df, list[[i]], ... = ...)
  }
  return(df)
}

# merge
fun_time <- merge_recursive(fun_timing2, by= "fun", all= FALSE)
# do some munging
fun_time2 <- data.frame(fun=fun_time[,1], avg_time=apply(fun_time[,-1], 1, mean, na.rm=T))
fun_time2$avg_pct <- fun_time2$avg_time / sum(fun_time2$avg_time)
fun_time2 <- fun_time2[order(fun_time2$avg_time, decreasing=TRUE),]
# examine results
R> head(fun_time2, 15)
                         fun  avg_time    avg_pct
4      base::standardGeneric 0.6760714 0.14745123
20                   NA::FUN 0.4666327 0.10177262
12       methods::initialize 0.4488776 0.09790023
9      kernlab::kernelMatrix 0.3522449 0.07682464
8   kernlab::as.kernelMatrix 0.3215816 0.07013698
11   methods::callNextMethod 0.2986224 0.06512958
1                base::apply 0.2893367 0.06310437
7     imputation::kNN_impute 0.2433163 0.05306731
14              methods::new 0.2309184 0.05036331
10    methods::addNextMethod 0.2012245 0.04388708
3               base::sapply 0.1875000 0.04089377
2               base::lapply 0.1865306 0.04068234
6  imputation::impute_fn_knn 0.1827551 0.03985890
19           NA::.nextMethod 0.1790816 0.03905772
18    NA::.findNextFromTable 0.1003571 0.02188790

Résultats

Les résultats font apparaître une image similaire, mais plus robuste, à celle d'un cas unique. A savoir, il y a beaucoup de surcharge de la part de R et aussi que library(kernlab) me ralentit. A noter que, depuis kernlab est mis en œuvre dans S4, la surcharge en R est liée puisque les classes S4 sont nettement plus lentes que les classes S3.

Je voudrais également noter que mon opinion personnelle est qu'une version nettoyée de ceci pourrait être une pull request utile en tant que méthode de résumé pour profr . Mais je suis curieux de connaître les suggestions des autres !

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X