88 votes

Conception du cache LRU

Le cache LRU (Least Recently Used) consiste à éliminer en premier les éléments les moins récemment utilisés. Comment concevoir et mettre en œuvre une telle classe de cache ? Les exigences de conception sont les suivantes :

1) trouver l'objet aussi vite que possible

2) Une fois qu'un cache manque et qu'un cache est plein, nous devons remplacer l'élément le moins récemment utilisé aussi vite que possible.

Comment analyser et mettre en œuvre cette question en termes de design pattern et de conception d'algorithme ?

2 votes

113voto

Une liste liée + une table de hachage de pointeurs vers les nœuds de la liste liée est la façon habituelle de mettre en œuvre des caches LRU. Cela donne des opérations O(1) (en supposant un hachage décent). L'avantage de ceci (étant O(1)) : vous pouvez faire une version multithread en verrouillant simplement la structure entière. Vous n'avez pas à vous soucier du verrouillage granulaire, etc.

En bref, la façon dont cela fonctionne :

Lors d'un accès à une valeur, vous déplacez le nœud correspondant dans la liste liée vers la tête.

Lorsque vous devez retirer une valeur du cache, vous la retirez à partir de la fin du cache.

Lorsque vous ajoutez une valeur au cache, vous la placez simplement en tête de la liste chaînée.

Merci à doublep, voici un site avec une implémentation C++ : Modèles de conteneurs divers .

32voto

Tsuneo Yoshioka Points 702

Ceci est mon exemple simple d'implémentation c++ pour le cache LRU, avec la combinaison de hash(unordered_map), et de liste. Les éléments de la liste ont une clé pour accéder à la carte, et les éléments de la carte ont un itérateur de la liste pour accéder à la liste.

#include <list>
#include <unordered_map>
#include <assert.h>

using namespace std;

template <class KEY_T, class VAL_T> class LRUCache{
private:
        list< pair<KEY_T,VAL_T> > item_list;
        unordered_map<KEY_T, decltype(item_list.begin()) > item_map;
        size_t cache_size;
private:
        void clean(void){
                while(item_map.size()>cache_size){
                        auto last_it = item_list.end(); last_it --;
                        item_map.erase(last_it->first);
                        item_list.pop_back();
                }
        };
public:
        LRUCache(int cache_size_):cache_size(cache_size_){
                ;
        };

        void put(const KEY_T &key, const VAL_T &val){
                auto it = item_map.find(key);
                if(it != item_map.end()){
                        item_list.erase(it->second);
                        item_map.erase(it);
                }
                item_list.push_front(make_pair(key,val));
                item_map.insert(make_pair(key, item_list.begin()));
                clean();
        };
        bool exist(const KEY_T &key){
                return (item_map.count(key)>0);
        };
        VAL_T get(const KEY_T &key){
                assert(exist(key));
                auto it = item_map.find(key);
                item_list.splice(item_list.begin(), item_list, it->second);
                return it->second->second;
        };

};

3 votes

Pourquoi utilisez-vous une liste et une carte sans accord ?

13 votes

La liste est implémentée en interne comme une liste doublement liée, et unordered_map est fondamentalement une table de hachage. c'est donc une solution efficace, en termes de complexité temporelle et spatiale.

12voto

Je vois ici plusieurs implémentations compliquées inutiles, donc j'ai décidé de fournir mon implémentation aussi. Le cache n'a que deux méthodes, get et set. J'espère que c'est plus lisible et compréhensible :

#include<unordered_map>
#include<list>

using namespace std;

template<typename K, typename V = K>
class LRUCache
{

private:
    list<K>items;
    unordered_map <K, pair<V, typename list<K>::iterator>> keyValuesMap;
    int csize;

public:
    LRUCache(int s) :csize(s) {
        if (csize < 1)
            csize = 10;
    }

    void set(const K key, const V value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end()) {
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
            if (keyValuesMap.size() > csize) {
                keyValuesMap.erase(items.back());
                items.pop_back();
            }
        }
        else {
            items.erase(pos->second.second);
            items.push_front(key);
            keyValuesMap[key] = { value, items.begin() };
        }
    }

    bool get(const K key, V &value) {
        auto pos = keyValuesMap.find(key);
        if (pos == keyValuesMap.end())
            return false;
        items.erase(pos->second.second);
        items.push_front(key);
        keyValuesMap[key] = { pos->second.first, items.begin() };
        value = pos->second.first;
        return true;
    }
};

3voto

Viren Points 1501

Voici mon implémentation pour un cache LRU simple et basique.

//LRU Cache
#include <cassert>
#include <list>

template <typename K,
          typename V
          >
class LRUCache
    {
    // Key access history, most recent at back
    typedef std::list<K> List;

    // Key to value and key history iterator
    typedef unordered_map< K,
                           std::pair<
                                     V,
                                     typename std::list<K>::iterator
                                    >
                         > Cache;

    typedef V (*Fn)(const K&);

public:
    LRUCache( size_t aCapacity, Fn aFn ) 
        : mFn( aFn )
        , mCapacity( aCapacity )
        {}

    //get value for key aKey
    V operator()( const K& aKey )
        {
        typename Cache::iterator it = mCache.find( aKey );
        if( it == mCache.end() ) //cache-miss: did not find the key
            {
            V v = mFn( aKey );
            insert( aKey, v );
            return v;
            }

        // cache-hit
        // Update access record by moving accessed key to back of the list
        mList.splice( mList.end(), mList, (it)->second.second );

        // return the retrieved value
        return (it)->second.first;
        }

private:
        // insert a new key-value pair in the cache
    void insert( const K& aKey, V aValue )
        {
        //method should be called only when cache-miss happens
        assert( mCache.find( aKey ) == mCache.end() );

        // make space if necessary
        if( mList.size() == mCapacity )
            {
            evict();
            }

        // record k as most-recently-used key
        typename std::list<K>::iterator it = mList.insert( mList.end(), aKey );

        // create key-value entry, linked to the usage record
        mCache.insert( std::make_pair( aKey, std::make_pair( aValue, it ) ) );
        }

        //Purge the least-recently used element in the cache
    void evict()
        {
        assert( !mList.empty() );

        // identify least-recently-used key
        const typename Cache::iterator it = mCache.find( mList.front() );

        //erase both elements to completely purge record
        mCache.erase( it );
        mList.pop_front();
        }

private:
    List mList;
    Cache mCache;
    Fn mFn;
    size_t mCapacity;
    };

2voto

Yang Liu Points 91

J'ai implémenté un cache LRU sécurisé pour les threads il y a deux ans.

LRU est typiquement implémenté avec un HashMap et une LinkedList. Vous pouvez chercher dans Google les détails de l'implémentation. Il y a beaucoup de ressources à ce sujet (Wikipedia a aussi une bonne explication).

Afin d'être sûr pour les fils, vous devez mettre un verrou chaque fois que vous modifiez l'état de la LRU.

Je vais coller mon code C++ ici pour votre référence.

Voici l'implémentation.

/***
    A template thread-safe LRU container.

    Typically LRU cache is implemented using a doubly linked list and a hash map.
    Doubly Linked List is used to store list of pages with most recently used page
    at the start of the list. So, as more pages are added to the list,
    least recently used pages are moved to the end of the list with page
    at tail being the least recently used page in the list.

    Additionally, this LRU provides time-to-live feature. Each entry has an expiration
    datetime.
***/
#ifndef LRU_CACHE_H
#define LRU_CACHE_H

#include <iostream>
#include <list>

#include <boost/unordered_map.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/mutex.hpp>

template <typename KeyType, typename ValueType>
  class LRUCache {
 private:
  typedef boost::posix_time::ptime DateTime;

  // Cache-entry
  struct ListItem {
  ListItem(const KeyType &key,
           const ValueType &value,
           const DateTime &expiration_datetime)
  : m_key(key), m_value(value), m_expiration_datetime(expiration_datetime){}
    KeyType m_key;
    ValueType m_value;
    DateTime m_expiration_datetime;
  };

  typedef boost::shared_ptr<ListItem> ListItemPtr;
  typedef std::list<ListItemPtr> LruList;
  typedef typename std::list<ListItemPtr>::iterator LruListPos;
  typedef boost::unordered_map<KeyType, LruListPos> LruMapper;

  // A mutext to ensuare thread-safety.
  boost::mutex m_cache_mutex;

  // Maximum number of entries.
  std::size_t m_capacity;

  // Stores cache-entries from latest to oldest.
  LruList m_list;

  // Mapper for key to list-position.
  LruMapper m_mapper;

  // Default time-to-live being add to entry every time we touch it.
  unsigned long m_ttl_in_seconds;

  /***
      Note : This is a helper function whose function call need to be wrapped
      within a lock. It returns true/false whether key exists and
      not expires. Delete the expired entry if necessary.
  ***/
  bool containsKeyHelper(const KeyType &key) {
    bool has_key(m_mapper.count(key) != 0);
    if (has_key) {
      LruListPos pos = m_mapper[key];
      ListItemPtr & cur_item_ptr = *pos;

      // Remove the entry if key expires
      if (isDateTimeExpired(cur_item_ptr->m_expiration_datetime)) {
        has_key = false;
        m_list.erase(pos);
        m_mapper.erase(key);
      }
    }
    return has_key;
  }

  /***
      Locate an item in list by key, and move it at the front of the list,
      which means make it the latest item.
      Note : This is a helper function whose function call need to be wrapped
      within a lock.
  ***/
  void makeEntryTheLatest(const KeyType &key) {
    if (m_mapper.count(key)) {
      // Add original item at the front of the list,
      // and update <Key, ListPosition> mapper.
      LruListPos original_list_position = m_mapper[key];
      const ListItemPtr & cur_item_ptr = *original_list_position;
      m_list.push_front(cur_item_ptr);
      m_mapper[key] = m_list.begin();

      // Don't forget to update its expiration datetime.
      m_list.front()->m_expiration_datetime = getExpirationDatetime(m_list.front()->m_expiration_datetime);

      // Erase the item at original position.
      m_list.erase(original_list_position);
    }
  }

 public:

  /***
      Cache should have capacity to limit its memory usage.
      We also add time-to-live for each cache entry to expire
      the stale information. By default, ttl is one hour.
  ***/
 LRUCache(std::size_t capacity, unsigned long ttl_in_seconds = 3600)
   : m_capacity(capacity), m_ttl_in_seconds(ttl_in_seconds) {}

  /***
      Return now + time-to-live
  ***/
  DateTime getExpirationDatetime(const DateTime &now) {
    static const boost::posix_time::seconds ttl(m_ttl_in_seconds);
    return now + ttl;
  }

  /***
      If input datetime is older than current datetime,
      then it is expired.
  ***/
  bool isDateTimeExpired(const DateTime &date_time) {
    return date_time < boost::posix_time::second_clock::local_time();
  }

  /***
      Return the number of entries in this cache.
   ***/
  std::size_t size() {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    return m_mapper.size();
  }

  /***
      Get value by key.
      Return true/false whether key exists.
      If key exists, input paramter value will get updated.
  ***/
  bool get(const KeyType &key, ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (!containsKeyHelper(key)) {
      return false;
    } else {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Then get its value.
      value = m_list.front()->m_value;
      return true;
    }
  }

  /***
      Add <key, value> pair if no such key exists.
      Otherwise, just update the value of old key.
  ***/
  void put(const KeyType &key, const ValueType &value) {
    boost::mutex::scoped_lock lock(m_cache_mutex);
    if (containsKeyHelper(key)) {
      // Make the entry the latest and update its TTL.
      makeEntryTheLatest(key);

      // Now we only need to update its value.
      m_list.front()->m_value = value;
    } else { // Key exists and is not expired.
      if (m_list.size() == m_capacity) {
        KeyType delete_key = m_list.back()->m_key;
        m_list.pop_back();
        m_mapper.erase(delete_key);
      }

      DateTime now = boost::posix_time::second_clock::local_time();
      m_list.push_front(boost::make_shared<ListItem>(key, value,
                                                     getExpirationDatetime(now)));
      m_mapper[key] = m_list.begin();
    }
  }
};
#endif

Voici les tests unitaires.

#include "cxx_unit.h"
#include "lru_cache.h"

struct LruCacheTest
  : public FDS::CxxUnit::TestFixture<LruCacheTest>{
  CXXUNIT_TEST_SUITE();
  CXXUNIT_TEST(LruCacheTest, testContainsKey);
  CXXUNIT_TEST(LruCacheTest, testGet);
  CXXUNIT_TEST(LruCacheTest, testPut);
  CXXUNIT_TEST_SUITE_END();

  void testContainsKey();
  void testGet();
  void testPut();
};

void LruCacheTest::testContainsKey() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5, 2, 4

  CXXUNIT_ASSERT(cache.get(3, value_holder) == false); // 5, 2, 4
  CXXUNIT_ASSERT(value_holder == "2"); // value_holder is still "2"

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II"); // {2, "II"}, 4, 5

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testGet() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
  CXXUNIT_ASSERT(value_holder == "2");

  cache.put(5,"5"); // 5,2,4
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true); // 5,2,4
  CXXUNIT_ASSERT(value_holder == "5");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // {2 : "II"}, 4, 5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

void LruCacheTest::testPut() {
  LRUCache<int,std::string> cache(3);
  cache.put(1,"1"); // 1
  cache.put(2,"2"); // 2,1
  cache.put(3,"3"); // 3,2,1
  cache.put(4,"4"); // 4,3,2
  cache.put(5,"5"); // 5,4,3

  std::string value_holder("");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == false); // 5,4,3
  CXXUNIT_ASSERT(value_holder == "");

  CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4,5,3
  CXXUNIT_ASSERT(value_holder == "4");

  cache.put(2,"II");
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // II,4,5
  CXXUNIT_ASSERT(value_holder == "II");

  // Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
  CXXUNIT_ASSERT(cache.size() == 3);
  CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
  CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}

CXXUNIT_REGISTER_TEST(LruCacheTest);

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X