Cela affichera les poids et les paramètres d'un modèle (mais pas la forme en sortie).
from torch.nn.modules.module import _addindent
import torch
import numpy as np
def torch_summarize(model, show_weights=True, show_parameters=True):
"""Summarizes torch model by showing trainable parameters and weights."""
tmpstr = model.__class__.__name__ + ' (\n'
for key, module in model._modules.items():
# if it contains layers let call it recursively to get params and weights
if type(module) in [
torch.nn.modules.container.Container,
torch.nn.modules.container.Sequential
]:
modstr = torch_summarize(module)
else:
modstr = module.__repr__()
modstr = _addindent(modstr, 2)
params = sum([np.prod(p.size()) for p in module.parameters()])
weights = tuple([tuple(p.size()) for p in module.parameters()])
tmpstr += ' (' + key + '): ' + modstr
if show_weights:
tmpstr += ', weights={}'.format(weights)
if show_parameters:
tmpstr += ', parameters={}'.format(params)
tmpstr += '\n'
tmpstr = tmpstr + ')'
return tmpstr
# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))
# # Output
# AlexNet (
# (features): Sequential (
# (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)), weights=((64, 3, 11, 11), (64,)), parameters=23296
# (1): ReLU (inplace), weights=(), parameters=0
# (2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)), weights=((192, 64, 5, 5), (192,)), parameters=307392
# (4): ReLU (inplace), weights=(), parameters=0
# (5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((384, 192, 3, 3), (384,)), parameters=663936
# (7): ReLU (inplace), weights=(), parameters=0
# (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 384, 3, 3), (256,)), parameters=884992
# (9): ReLU (inplace), weights=(), parameters=0
# (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 256, 3, 3), (256,)), parameters=590080
# (11): ReLU (inplace), weights=(), parameters=0
# (12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
# ), weights=((64, 3, 11, 11), (64,), (192, 64, 5, 5), (192,), (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3, 3), (256,)), parameters=2469696
# (classifier): Sequential (
# (0): Dropout (p = 0.5), weights=(), parameters=0
# (1): Linear (9216 -> 4096), weights=((4096, 9216), (4096,)), parameters=37752832
# (2): ReLU (inplace), weights=(), parameters=0
# (3): Dropout (p = 0.5), weights=(), parameters=0
# (4): Linear (4096 -> 4096), weights=((4096, 4096), (4096,)), parameters=16781312
# (5): ReLU (inplace), weights=(), parameters=0
# (6): Linear (4096 -> 1000), weights=((1000, 4096), (1000,)), parameters=4097000
# ), weights=((4096, 9216), (4096,), (4096, 4096), (4096,), (1000, 4096), (1000,)), parameters=58631144
# )
Edit: isaykatsman a un représentant principal pour ajouter un model.summary()
identique à keras https://github.com/pytorch/pytorch/pull/3043/files