Ok, voici ce que j'ai trouvé pour un point fixe struct, basé sur le lien dans ma question d'origine mais aussi, y compris certains des correctifs à la façon dont elle a été la manipulation de la division et de la multiplication, et ajouté logique pour les modules, les comparaisons, les quarts de travail, etc:
public struct FInt
{
public long RawValue;
public const int SHIFT_AMOUNT = 12; //12 is 4096
public const long One = 1 << SHIFT_AMOUNT;
public const int OneI = 1 << SHIFT_AMOUNT;
public static FInt OneF = FInt.Create( 1, true );
#region Constructors
public static FInt Create( long StartingRawValue, bool UseMultiple )
{
FInt fInt;
fInt.RawValue = StartingRawValue;
if ( UseMultiple )
fInt.RawValue = fInt.RawValue << SHIFT_AMOUNT;
return fInt;
}
public static FInt Create( double DoubleValue )
{
FInt fInt;
DoubleValue *= (double)One;
fInt.RawValue = (int)Math.Round( DoubleValue );
return fInt;
}
#endregion
public int IntValue
{
get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
}
public int ToInt()
{
return (int)( this.RawValue >> SHIFT_AMOUNT );
}
public double ToDouble()
{
return (double)this.RawValue / (double)One;
}
public FInt Inverse
{
get { return FInt.Create( -this.RawValue, false ); }
}
#region FromParts
/// <summary>
/// Create a fixed-int number from parts. For example, to create 1.5 pass in 1 and 500.
/// </summary>
/// <param name="PreDecimal">The number above the decimal. For 1.5, this would be 1.</param>
/// <param name="PostDecimal">The number below the decimal, to three digits.
/// For 1.5, this would be 500. For 1.005, this would be 5.</param>
/// <returns>A fixed-int representation of the number parts</returns>
public static FInt FromParts( int PreDecimal, int PostDecimal )
{
FInt f = FInt.Create( PreDecimal, true );
if ( PostDecimal != 0 )
f.RawValue += ( FInt.Create( PostDecimal ) / 1000 ).RawValue;
return f;
}
#endregion
#region *
public static FInt operator *( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT;
return fInt;
}
public static FInt operator *( FInt one, int multi )
{
return one * (FInt)multi;
}
public static FInt operator *( int multi, FInt one )
{
return one * (FInt)multi;
}
#endregion
#region /
public static FInt operator /( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue );
return fInt;
}
public static FInt operator /( FInt one, int divisor )
{
return one / (FInt)divisor;
}
public static FInt operator /( int divisor, FInt one )
{
return (FInt)divisor / one;
}
#endregion
#region %
public static FInt operator %( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue ) % ( other.RawValue );
return fInt;
}
public static FInt operator %( FInt one, int divisor )
{
return one % (FInt)divisor;
}
public static FInt operator %( int divisor, FInt one )
{
return (FInt)divisor % one;
}
#endregion
#region +
public static FInt operator +( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue + other.RawValue;
return fInt;
}
public static FInt operator +( FInt one, int other )
{
return one + (FInt)other;
}
public static FInt operator +( int other, FInt one )
{
return one + (FInt)other;
}
#endregion
#region -
public static FInt operator -( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue - other.RawValue;
return fInt;
}
public static FInt operator -( FInt one, int other )
{
return one - (FInt)other;
}
public static FInt operator -( int other, FInt one )
{
return (FInt)other - one;
}
#endregion
#region ==
public static bool operator ==( FInt one, FInt other )
{
return one.RawValue == other.RawValue;
}
public static bool operator ==( FInt one, int other )
{
return one == (FInt)other;
}
public static bool operator ==( int other, FInt one )
{
return (FInt)other == one;
}
#endregion
#region !=
public static bool operator !=( FInt one, FInt other )
{
return one.RawValue != other.RawValue;
}
public static bool operator !=( FInt one, int other )
{
return one != (FInt)other;
}
public static bool operator !=( int other, FInt one )
{
return (FInt)other != one;
}
#endregion
#region >=
public static bool operator >=( FInt one, FInt other )
{
return one.RawValue >= other.RawValue;
}
public static bool operator >=( FInt one, int other )
{
return one >= (FInt)other;
}
public static bool operator >=( int other, FInt one )
{
return (FInt)other >= one;
}
#endregion
#region <=
public static bool operator <=( FInt one, FInt other )
{
return one.RawValue <= other.RawValue;
}
public static bool operator <=( FInt one, int other )
{
return one <= (FInt)other;
}
public static bool operator <=( int other, FInt one )
{
return (FInt)other <= one;
}
#endregion
#region >
public static bool operator >( FInt one, FInt other )
{
return one.RawValue > other.RawValue;
}
public static bool operator >( FInt one, int other )
{
return one > (FInt)other;
}
public static bool operator >( int other, FInt one )
{
return (FInt)other > one;
}
#endregion
#region <
public static bool operator <( FInt one, FInt other )
{
return one.RawValue < other.RawValue;
}
public static bool operator <( FInt one, int other )
{
return one < (FInt)other;
}
public static bool operator <( int other, FInt one )
{
return (FInt)other < one;
}
#endregion
public static explicit operator int( FInt src )
{
return (int)( src.RawValue >> SHIFT_AMOUNT );
}
public static explicit operator FInt( int src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( long src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( ulong src )
{
return FInt.Create( (long)src, true );
}
public static FInt operator <<( FInt one, int Amount )
{
return FInt.Create( one.RawValue << Amount, false );
}
public static FInt operator >>( FInt one, int Amount )
{
return FInt.Create( one.RawValue >> Amount, false );
}
public override bool Equals( object obj )
{
if ( obj is FInt )
return ( (FInt)obj ).RawValue == this.RawValue;
else
return false;
}
public override int GetHashCode()
{
return RawValue.GetHashCode();
}
public override string ToString()
{
return this.RawValue.ToString();
}
}
public struct FPoint
{
public FInt X;
public FInt Y;
public static FPoint Create( FInt X, FInt Y )
{
FPoint fp;
fp.X = X;
fp.Y = Y;
return fp;
}
public static FPoint FromPoint( Point p )
{
FPoint f;
f.X = (FInt)p.X;
f.Y = (FInt)p.Y;
return f;
}
public static Point ToPoint( FPoint f )
{
return new Point( f.X.IntValue, f.Y.IntValue );
}
#region Vector Operations
public static FPoint VectorAdd( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X + F2.X;
result.Y = F1.Y + F2.Y;
return result;
}
public static FPoint VectorSubtract( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X - F2.X;
result.Y = F1.Y - F2.Y;
return result;
}
public static FPoint VectorDivide( FPoint F1, int Divisor )
{
FPoint result;
result.X = F1.X / Divisor;
result.Y = F1.Y / Divisor;
return result;
}
#endregion
}
Sur la base des observations de ShuggyCoUk, je vois que c'est dans Q12 format. C'est assez précises pour mes fins. Bien sûr, outre les corrections de bugs, j'ai déjà eu ce format de base avant j'ai demandé à ma question. Ce que je cherchais à trouver des moyens pour calculer la Racine carrée, Atan2, Sin et Cos en C# à l'aide d'une structure de ce genre. Il n'y a pas d'autres choses que je connais en C# qui va traiter, mais en Java, j'ai réussi à trouver la MathFP bibliothèque par Onno Hommes. C'est un libéral de la source de licence du logiciel, donc j'ai converti quelques-uns de ses fonctions à mes fins en C# (avec un correctif pour atan2, je pense). Profitez de:
#region PI, DoublePI
public static FInt PI = FInt.Create( 12868, false ); //PI x 2^12
public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
public static FInt PIOver180F = PI / (FInt)180; //PI / 180
#endregion
#region Sqrt
public static FInt Sqrt( FInt f, int NumberOfIterations )
{
if ( f.RawValue < 0 ) //NaN in Math.Sqrt
throw new ArithmeticException( "Input Error" );
if ( f.RawValue == 0 )
return (FInt)0;
FInt k = f + FInt.OneF >> 1;
for ( int i = 0; i < NumberOfIterations; i++ )
k = ( k + ( f / k ) ) >> 1;
if ( k.RawValue < 0 )
throw new ArithmeticException( "Overflow" );
else
return k;
}
public static FInt Sqrt( FInt f )
{
byte numberOfIterations = 8;
if ( f.RawValue > 0x64000 )
numberOfIterations = 12;
if ( f.RawValue > 0x3e8000 )
numberOfIterations = 16;
return Sqrt( f, numberOfIterations );
}
#endregion
#region Sin
public static FInt Sin( FInt i )
{
FInt j = (FInt)0;
for ( ; i < 0; i += FInt.Create( 25736, false ) ) ;
if ( i > FInt.Create( 25736, false ) )
i %= FInt.Create( 25736, false );
FInt k = ( i * FInt.Create( 10, false ) ) / FInt.Create( 714, false );
if ( i != 0 && i != FInt.Create( 6434, false ) && i != FInt.Create( 12868, false ) &&
i != FInt.Create( 19302, false ) && i != FInt.Create( 25736, false ) )
j = ( i * FInt.Create( 100, false ) ) / FInt.Create( 714, false ) - k * FInt.Create( 10, false );
if ( k <= FInt.Create( 90, false ) )
return sin_lookup( k, j );
if ( k <= FInt.Create( 180, false ) )
return sin_lookup( FInt.Create( 180, false ) - k, j );
if ( k <= FInt.Create( 270, false ) )
return sin_lookup( k - FInt.Create( 180, false ), j ).Inverse;
else
return sin_lookup( FInt.Create( 360, false ) - k, j ).Inverse;
}
private static FInt sin_lookup( FInt i, FInt j )
{
if ( j > 0 && j < FInt.Create( 10, false ) && i < FInt.Create( 90, false ) )
return FInt.Create( SIN_TABLE[i.RawValue], false ) +
( ( FInt.Create( SIN_TABLE[i.RawValue + 1], false ) - FInt.Create( SIN_TABLE[i.RawValue], false ) ) /
FInt.Create( 10, false ) ) * j;
else
return FInt.Create( SIN_TABLE[i.RawValue], false );
}
private static int[] SIN_TABLE = {
0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
4096
};
#endregion
private static FInt mul( FInt F1, FInt F2 )
{
return F1 * F2;
}
#region Cos, Tan, Asin
public static FInt Cos( FInt i )
{
return Sin( i + FInt.Create( 6435, false ) );
}
public static FInt Tan( FInt i )
{
return Sin( i ) / Cos( i );
}
public static FInt Asin( FInt F )
{
bool isNegative = F < 0;
F = Abs( F );
if ( F > FInt.OneF )
throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );
FInt f1 = mul( mul( mul( mul( FInt.Create( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 26353447 >> FInt.SHIFT_AMOUNT, false );
FInt f2 = PI / FInt.Create( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );
return isNegative ? f2.Inverse : f2;
}
#endregion
#region ATan, ATan2
public static FInt Atan( FInt F )
{
return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
}
public static FInt Atan2( FInt F1, FInt F2 )
{
if ( F2.RawValue == 0 && F1.RawValue == 0 )
return (FInt)0;
FInt result = (FInt)0;
if ( F2 > 0 )
result = Atan( F1 / F2 );
else if ( F2 < 0 )
{
if ( F1 >= 0 )
result = ( PI - Atan( Abs( F1 / F2 ) ) );
else
result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
}
else
result = ( F1 >= 0 ? PI : PI.Inverse ) / FInt.Create( 2, true );
return result;
}
#endregion
#region Abs
public static FInt Abs( FInt F )
{
if ( F < 0 )
return F.Inverse;
else
return F;
}
#endregion
Il y a un certain nombre d'autres fonctions Dr Hommes' MathFP de la bibliothèque, mais ils ont été au-delà de ce dont j'avais besoin, et donc je n'ai pas pris le temps de les traduire en C# (ce processus a été rendu plus difficile par le fait qu'il a été à l'aide d'une longue, et je suis en utilisant le FInt struct, ce qui rend les règles de conversion sont un peu difficiles à voir immédiatement).
L'exactitude de ces fonctions, comme ils sont codés ici, c'est plus que suffisant pour mes besoins, mais si vous avez besoin de plus, vous pouvez augmenter la MAJ MONTANT de FInt. Juste être conscient que si vous le faites, l'une des constantes sur le Dr Hommes fonctions devront ensuite être divisé par 4096 et ensuite multiplié par quel que soit votre nouveau DÉCALAGE exige. Vous êtes susceptible de rencontrer quelques bugs si vous n'êtes pas prudent, alors assurez-vous d'exécuter les contrôles contre les fonctions Mathématiques pour vous assurer que vos résultats ne sont pas rebutés par incorrectement réglage d'une constante.
Jusqu'à présent, cette FInt logique semble aussi vite, si ce n'est peut-être un peu plus rapide, que l'équivalent construite dans .net fonctions. Que serait évidemment varier en fonction de la machine, depuis le fp coprocesseur serait de déterminer que, si je n'ai pas couru de référence spécifiques. Mais ils sont intégrés dans mon jeu maintenant, et j'ai vu une légère diminution de l'utilisation du processeur par rapport à avant (c'est sur un Q6600 quad core-sur une baisse de 1% de l'utilisation en moyenne).
Merci encore à tous ceux qui ont commenté pour votre aide. Personne ne m'a signalé directement à ce que je cherchais, mais vous m'avez donné quelques indices qui m'a aidé à me trouver moi-même sur google. J'espère que ce code s'avère être utile pour quelqu'un d'autre, car il ne semble pas être quelque chose de comparable en C# publié publiquement.