66 votes

Dimension de dimension négative provoquée par la soustraction de 3 de 1 pour 'Conv2D'

Je suis l'aide de Keras avec Tensorflow comme backend , voici mon code:

import numpy as np
np.random.seed(1373) 
import tensorflow as tf
tf.python.control_flow_ops = tf

import os
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils

batch_size = 128
nb_classes = 10
nb_epoch = 12


img_rows, img_cols = 28, 28

nb_filters = 32

nb_pool = 2

nb_conv = 3


(X_train, y_train), (X_test, y_test) = mnist.load_data()

print(X_train.shape[0])

X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)


X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255


print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')


Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()

model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes)) 
model.add(Activation('softmax')) 

model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=["accuracy"])


model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))

score = model.evaluate(X_test, Y_test, verbose=0)

print('Test score:', score[0])
print('Test accuracy:', score[1])

et Trackback d'erreur:

Using TensorFlow backend.
60000
('X_train shape:', (60000, 1, 28, 28))
(60000, 'train samples')
(10000, 'test samples')
Traceback (most recent call last):
  File "mnist.py", line 154, in <module>
    input_shape=(1, img_rows, img_cols)))
  File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 276, in add
    layer.create_input_layer(batch_input_shape, input_dtype)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 370, in create_input_layer
    self(x)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 514, in __call__
    self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 572, in add_inbound_node
    Node.create_node(self, inbound_layers, node_indices, tensor_indices)
  File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 149, in create_node
    output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
  File "/usr/local/lib/python2.7/dist-packages/keras/layers/convolutional.py", line 466, in call
    filter_shape=self.W_shape)
  File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 1579, in conv2d
    x = tf.nn.conv2d(x, kernel, strides, padding=padding)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 396, in conv2d
    data_format=data_format, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2242, in create_op
    set_shapes_for_outputs(ret)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1617, in set_shapes_for_outputs
    shapes = shape_func(op)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1568, in call_with_requiring
    return call_cpp_shape_fn(op, require_shape_fn=True)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/common_shapes.py", line 610, in call_cpp_shape_fn
    debug_python_shape_fn, require_shape_fn)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/common_shapes.py", line 675, in _call_cpp_shape_fn_impl
    raise ValueError(err.message)
ValueError: Negative dimension size caused by subtracting 3 from 1 for 'Conv2D' (op: 'Conv2D') with input shapes: [?,1,28,28], [3,3,28,32].

J'ai d'abord vu des réponses que le problème est avec Tensorflow version donc je l'ai mise à niveau Tensorflow de 0.12.0, mais il existe encore , est que le problème avec le réseau ou que je manque quelque chose, que devrait - input_shape ressemble?

Mise à jour Voici ./keras/keras.json:

{
    "image_dim_ordering": "tf", 
    "epsilon": 1e-07, 
    "floatx": "float32", 
    "backend": "tensorflow"
}

95voto

Benoit Seguin Points 1228

Votre problème vient de la image_ordering_dim en keras.json.

De Keras de Traitement d'Images doc:

dim_ordering: l'Un des {"th", "tf"}. "tf" mode signifie que les images doivent avoir la forme (échantillons, la hauteur, la largeur, canaux), "th" mode signifie que les images doivent avoir la forme (échantillons, les canaux, la hauteur, la largeur). Il prend par défaut la image_dim_ordering valeur trouvée dans votre Keras fichier de configuration dans ~/.keras/keras.json. Si vous n'avez jamais le définir, puis il sera "tf".

Keras cartes de l'opération de convolution au backend (théano ou tensorflow). Toutefois, les deux backends ont fait des choix différents pour la commande des dimensions. Si votre image lot de N images de Hxl taille avec C canaux, théano utilise le NCHW de la commande alors que tensorflow utilise le NHWC de la commande.

Keras vous permet de choisir la commande que vous préférez et faire la conversion à la carte pour les backends derrière. Mais si vous choisissez image_ordering_dim="th" il s'attend à ce Théano de style de la commande (NCHW, celui que vous avez dans votre code) et si image_ordering_dim="tf" il s'attend à ce tensorflow de style de la commande (NHWC).

Depuis votre image_ordering_dim est définie à l' "tf", si vous remodelez vos données à l'tensorflow de style, il devrait fonctionner:

X_train = X_train.reshape(X_train.shape[0], img_cols, img_rows, 1)
X_test = X_test.reshape(X_test.shape[0], img_cols, img_rows, 1)

et

input_shape=(img_cols, img_rows, 1)

56voto

Jacquot Points 1044

FWIW, j'ai eu cette erreur à plusieurs reprises avec quelques valeurs de strides ou kernel_size mais pas toutes, avec les commandes backend et image_ordering déjà définies en tant que tensorflow, et elles ont toutes disparu lorsque j'ai ajouté padding="same"

19voto

Shrish Trivedi Points 189

Ajoutez simplement ceci:

 from keras import backend as K
K.set_image_dim_ordering('th')
 

3voto

J'ai rencontré le même problème, mais il a été résolu en modifiant la fonction conv2d:

 `
if K.image_data_format=='channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1,img_cols,img_rows)
    x_test = x_test.reshape(x_test.shape[0], 1,img_cols,img_rows)
    input_shape = (1,img_cols,img_rows)
else:
    x_train = x_train.reshape(x_train.shape[0],img_cols,img_rows,1)
    x_test = x_test.reshape(x_test.shape[0],img_cols,img_rows,1)
    input_shape = (img_cols,img_rows,1)
model.add(Convolution2D(32,(3, 3), input_shape = input_shape, activation="relu"))
`
 

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X