Si vous avez juste envie de (semi) régions limitrophes, il y a déjà une mise en œuvre simple en Python: SciPy's ndimage.la morphologie du module. C'est assez commun de l'image de la morphologie de l'opération.
Fondamentalement, vous avez 5 étapes:
def find_paws(data, smooth_radius=5, threshold=0.0001):
data = sp.ndimage.uniform_filter(data, smooth_radius)
thresh = data > threshold
filled = sp.ndimage.morphology.binary_fill_holes(thresh)
coded_paws, num_paws = sp.ndimage.label(filled)
data_slices = sp.ndimage.find_objects(coded_paws)
return object_slices
Le flou sur les données d'entrée un peu assurez-vous que les pattes ont continu d'une empreinte. (Il serait plus efficace d'utiliser un noyau plus grand ( structure
kwarg aux divers scipy.ndimage.morphology
des fonctions), mais ce n'est pas tout à fait correctement son travail pour une raison quelconque...)
Seuil de la matrice de sorte que vous avez un booléen tableau de lieux où la pression est supérieure à un certain seuil valeur ( thresh = data > value
)
Remplir interne des trous, de sorte que vous avez plus propre régions (filled = sp.ndimage.morphology.binary_fill_holes(thresh)
)
Trouver les séparer des régions contiguës (coded_paws, num_paws = sp.ndimage.label(filled)
). Cette fonction retourne un tableau avec les régions codé par le nombre (chaque région est une zone contiguë d'un unique entier (de 1 jusqu'au nombre de pattes) avec des zéros partout ailleurs)).
Isoler les régions contiguës à l'aide de data_slices = sp.ndimage.find_objects(coded_paws)
. Cela renvoie une liste de tuples de slice
objets, de sorte que vous pourriez obtenir de la région de données de chaque patte avec [data[x] for x in data_slices]
. Au lieu de cela, nous allons dessiner un rectangle sur la base de ces tranches, ce qui prend un peu plus de travail.
Les deux animations ci-dessous montrent votre "le Chevauchement des Pattes" et "Regroupées Pattes" données de l'exemple. Cette méthode semble fonctionner parfaitement. (Et pour ce qu'il vaut, c'est beaucoup plus fluide que les images GIF ci-dessous sur ma machine, de sorte que la patte de l'algorithme de détection est assez rapide...)
Voici un exemple complet (maintenant avec beaucoup plus d'explications détaillées). La grande majorité de ce qui est de la lecture de l'entrée et de faire une animation. Le réel de la patte de détection est à seulement 5 lignes de code.
import numpy as np
import scipy as sp
import scipy.ndimage
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
def animate(input_filename):
"""Detects paws and animates the position and raw data of each frame
in the input file"""
# With matplotlib, it's much, much faster to just update the properties
# of a display object than it is to create a new one, so we'll just update
# the data and position of the same objects throughout this animation...
infile = paw_file(input_filename)
# Since we're making an animation with matplotlib, we need
# ion() instead of show()...
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
fig.suptitle(input_filename)
# Make an image based on the first frame that we'll update later
# (The first frame is never actually displayed)
im = ax.imshow(infile.next()[1])
# Make 4 rectangles that we can later move to the position of each paw
rects = [Rectangle((0,0), 1,1, fc='none', ec='red') for i in range(4)]
[ax.add_patch(rect) for rect in rects]
title = ax.set_title('Time 0.0 ms')
# Process and display each frame
for time, frame in infile:
paw_slices = find_paws(frame)
# Hide any rectangles that might be visible
[rect.set_visible(False) for rect in rects]
# Set the position and size of a rectangle for each paw and display it
for slice, rect in zip(paw_slices, rects):
dy, dx = slice
rect.set_xy((dx.start, dy.start))
rect.set_width(dx.stop - dx.start + 1)
rect.set_height(dy.stop - dy.start + 1)
rect.set_visible(True)
# Update the image data and title of the plot
title.set_text('Time %0.2f ms' % time)
im.set_data(frame)
im.set_clim([frame.min(), frame.max()])
fig.canvas.draw()
def find_paws(data, smooth_radius=5, threshold=0.0001):
"""Detects and isolates contiguous regions in the input array"""
# Blur the input data a bit so the paws have a continous footprint
data = sp.ndimage.uniform_filter(data, smooth_radius)
# Threshold the blurred data (this needs to be a bit > 0 due to the blur)
thresh = data > threshold
# Fill any interior holes in the paws to get cleaner regions...
filled = sp.ndimage.morphology.binary_fill_holes(thresh)
# Label each contiguous paw
coded_paws, num_paws = sp.ndimage.label(filled)
# Isolate the extent of each paw
data_slices = sp.ndimage.find_objects(coded_paws)
return data_slices
def paw_file(filename):
"""Returns a iterator that yields the time and data in each frame
The infile is an ascii file of timesteps formatted similar to this:
Frame 0 (0.00 ms)
0.0 0.0 0.0
0.0 0.0 0.0
Frame 1 (0.53 ms)
0.0 0.0 0.0
0.0 0.0 0.0
...
"""
with open(filename) as infile:
while True:
try:
time, data = read_frame(infile)
yield time, data
except StopIteration:
break
def read_frame(infile):
"""Reads a frame from the infile."""
frame_header = infile.next().strip().split()
time = float(frame_header[-2][1:])
data = []
while True:
line = infile.next().strip().split()
if line == []:
break
data.append(line)
return time, np.array(data, dtype=np.float)
if __name__ == '__main__':
animate('Overlapping paws.bin')
animate('Grouped up paws.bin')
animate('Normal measurement.bin')
Mise à jour: pour autant Que l'identification de la patte est en contact avec le capteur à ce temps, la solution la plus simple est de simplement faire la même analyse, mais l'utilisation de toutes les données à la fois. (c'est à dire pile de l'entrée dans un tableau 3D, et de travailler avec elle, au lieu de la personne le temps des images). Parce que SciPy est ndimage fonctions sont conçues pour fonctionner avec la n-dimensions des tableaux, nous n'avons pas à modifier l'original de la patte de fonction de recherche.
# This uses functions (and imports) in the previous code example!!
def paw_regions(infile):
# Read in and stack all data together into a 3D array
data, time = [], []
for t, frame in paw_file(infile):
time.append(t)
data.append(frame)
data = np.dstack(data)
time = np.asarray(time)
# Find and label the paw impacts
data_slices, coded_paws = find_paws(data, smooth_radius=4)
# Sort by time of initial paw impact... This way we can determine which
# paws are which relative to the first paw with a simple modulo 4.
# (Assuming a 4-legged dog, where all 4 paws contacted the sensor)
data_slices.sort(key=lambda dat_slice: dat_slice[2].start)
# Plot up a simple analysis
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
annotate_paw_prints(time, data, data_slices, ax=ax1)
ax2 = fig.add_subplot(2,1,2)
plot_paw_impacts(time, data_slices, ax=ax2)
fig.suptitle(infile)
def plot_paw_impacts(time, data_slices, ax=None):
if ax is None:
ax = plt.gca()
# Group impacts by paw...
for i, dat_slice in enumerate(data_slices):
dx, dy, dt = dat_slice
paw = i%4 + 1
# Draw a bar over the time interval where each paw is in contact
ax.barh(bottom=paw, width=time[dt].ptp(), height=0.2,
left=time[dt].min(), align='center', color='red')
ax.set_yticks(range(1, 5))
ax.set_yticklabels(['Paw 1', 'Paw 2', 'Paw 3', 'Paw 4'])
ax.set_xlabel('Time (ms) Since Beginning of Experiment')
ax.yaxis.grid(True)
ax.set_title('Periods of Paw Contact')
def annotate_paw_prints(time, data, data_slices, ax=None):
if ax is None:
ax = plt.gca()
# Display all paw impacts (sum over time)
ax.imshow(data.sum(axis=2).T)
# Annotate each impact with which paw it is
# (Relative to the first paw to hit the sensor)
x, y = [], []
for i, region in enumerate(data_slices):
dx, dy, dz = region
# Get x,y center of slice...
x0 = 0.5 * (dx.start + dx.stop)
y0 = 0.5 * (dy.start + dy.stop)
x.append(x0); y.append(y0)
# Annotate the paw impacts
ax.annotate('Paw %i' % (i%4 +1), (x0, y0),
color='red', ha='center', va='bottom')
# Plot line connecting paw impacts
ax.plot(x,y, '-wo')
ax.axis('image')
ax.set_title('Order of Steps')