J'obtiens cette erreur bizarre:
classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
'precision', 'predicted', average, warn_for)`
mais alors, il imprime également le f-score de la première fois que je lance:
metrics.f1_score(y_test, y_pred, average='weighted')
La deuxième fois que je lance, il fournit le score sans erreur. Pourquoi est-ce?
>>> y_pred = test.predict(X_test)
>>> y_test
array([ 1, 10, 35, 9, 7, 29, 26, 3, 8, 23, 39, 11, 20, 2, 5, 23, 28,
30, 32, 18, 5, 34, 4, 25, 12, 24, 13, 21, 38, 19, 33, 33, 16, 20,
18, 27, 39, 20, 37, 17, 31, 29, 36, 7, 6, 24, 37, 22, 30, 0, 22,
11, 35, 30, 31, 14, 32, 21, 34, 38, 5, 11, 10, 6, 1, 14, 12, 36,
25, 8, 30, 3, 12, 7, 4, 10, 15, 12, 34, 25, 26, 29, 14, 37, 23,
12, 19, 19, 3, 2, 31, 30, 11, 2, 24, 19, 27, 22, 13, 6, 18, 20,
6, 34, 33, 2, 37, 17, 30, 24, 2, 36, 9, 36, 19, 33, 35, 0, 4,
1])
>>> y_pred
array([ 1, 10, 35, 7, 7, 29, 26, 3, 8, 23, 39, 11, 20, 4, 5, 23, 28,
30, 32, 18, 5, 39, 4, 25, 0, 24, 13, 21, 38, 19, 33, 33, 16, 20,
18, 27, 39, 20, 37, 17, 31, 29, 36, 7, 6, 24, 37, 22, 30, 0, 22,
11, 35, 30, 31, 14, 32, 21, 34, 38, 5, 11, 10, 6, 1, 14, 30, 36,
25, 8, 30, 3, 12, 7, 4, 10, 15, 12, 4, 22, 26, 29, 14, 37, 23,
12, 19, 19, 3, 25, 31, 30, 11, 25, 24, 19, 27, 22, 13, 6, 18, 20,
6, 39, 33, 9, 37, 17, 30, 24, 9, 36, 39, 36, 19, 33, 35, 0, 4,
1])
>>> metrics.f1_score(y_test, y_pred, average='weighted')
C:\Users\Michael\Miniconda3\envs\snowflakes\lib\site-packages\sklearn\metrics\classification.py:1113: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 in labels with no predicted samples.
'precision', 'predicted', average, warn_for)
0.87282051282051276
>>> metrics.f1_score(y_test, y_pred, average='weighted')
0.87282051282051276
>>> metrics.f1_score(y_test, y_pred, average='weighted')
0.87282051282051276
Aussi, pourquoi est-il une fuite en 'precision', 'predicted', average, warn_for)
message d'erreur? Il n'y a pas de parenthèse ouverte alors pourquoi prend-elle fin à une parenthèse fermante? Je suis en cours d'exécution sklearn 0.18.1 à l'aide de Python 3.6.0 dans une conda de l'environnement sur Windows 10.
J'ai également regardé ici et je ne sais pas si c'est le même bug. Cette SORTE de post n'a pas de solution.