Spark offre un NULL
- fort opérateur d'égalité:
numbersDf
.join(lettersDf, numbersDf("numbers") <=> lettersDf("numbers"))
.drop(lettersDf("numbers"))
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| null| zzz|
| | hhh|
+-------+-------+
Veillez à ne pas utiliser avec de l'Étincelle 1.5 ou une version antérieure. Avant l'Étincelle de 1,6 qu'il fallait un produit Cartésien (SPARK-11111 - Rapide null sûr de jointure).
Dans Spark 2.3.0 ou plus tard, vous pouvez utiliser Column.eqNullSafe
dans PySpark:
numbers_df = sc.parallelize([
("123", ), ("456", ), (None, ), ("", )
]).toDF(["numbers"])
letters_df = sc.parallelize([
("123", "abc"), ("456", "def"), (None, "zzz"), ("", "hhh")
]).toDF(["numbers", "letters"])
numbers_df.join(letters_df, numbers_df.numbers.eqNullSafe(letters_df.numbers))
+-------+-------+-------+
|numbers|numbers|letters|
+-------+-------+-------+
| 456| 456| def|
| null| null| zzz|
| | | hhh|
| 123| 123| abc|
+-------+-------+-------+
et %<=>%
dans SparkR:
numbers_df <- createDataFrame(data.frame(numbers = c("123", "456", NA, "")))
letters_df <- createDataFrame(data.frame(
numbers = c("123", "456", NA, ""),
letters = c("abc", "def", "zzz", "hhh")
))
head(join(numbers_df, letters_df, numbers_df$numbers %<=>% letters_df$numbers))
numbers numbers letters
1 456 456 def
2 <NA> <NA> zzz
3 hhh
4 123 123 abc
Avec SQL (Étincelle 2.2.0+), vous pouvez utiliser IS NOT DISTINCT FROM
:
SELECT * FROM numbers JOIN letters
ON numbers.numbers IS NOT DISTINCT FROM letters.numbers
C'est peut être utilisé avec DataFrame
API:
numbersDf.alias("numbers")
.join(lettersDf.alias("letters"))
.where("numbers.numbers IS NOT DISTINCT FROM letters.numbers")