J'en ai deux. DataFrame
s :
J'ai besoin d'un syndicat comme celui-ci :
El unionAll
ne fonctionne pas car le nombre et le nom des colonnes sont différents.
Comment puis-je le faire ?
En Scala, il suffit d'ajouter toutes les colonnes manquantes en tant que nulls
.
import org.apache.spark.sql.functions._
// let df1 and df2 the Dataframes to merge
val df1 = sc.parallelize(List(
(50, 2),
(34, 4)
)).toDF("age", "children")
val df2 = sc.parallelize(List(
(26, true, 60000.00),
(32, false, 35000.00)
)).toDF("age", "education", "income")
val cols1 = df1.columns.toSet
val cols2 = df2.columns.toSet
val total = cols1 ++ cols2 // union
def expr(myCols: Set[String], allCols: Set[String]) = {
allCols.toList.map(x => x match {
case x if myCols.contains(x) => col(x)
case _ => lit(null).as(x)
})
}
df1.select(expr(cols1, total):_*).unionAll(df2.select(expr(cols2, total):_*)).show()
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 50| 2| null| null|
| 34| 4| null| null|
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+
Les deux temporels DataFrames
auront le même ordre de colonnes, parce que nous faisons un mappage par le biais de total
dans les deux cas.
df1.select(expr(cols1, total):_*).show()
df2.select(expr(cols2, total):_*).show()
+---+--------+---------+------+
|age|children|education|income|
+---+--------+---------+------+
| 50| 2| null| null|
| 34| 4| null| null|
+---+--------+---------+------+
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+
J'exécute exactement la même commande et les colonnes ne sont pas dans le même ordre, lorsque j'exécute l'union les valeurs sont fausses.
Il est intéressant de noter que, dans spark 1.5.2, il semble que l'ordre ait de l'importance (je crois qu'il ne devrait pas). Cependant, je pense que vos colonnes devraient avoir le même ordre que total
(voir la carte dans expr
).
Voici le code pour Python 3.0 en utilisant pyspark :
from pyspark.sql.functions import lit
def __order_df_and_add_missing_cols(df, columns_order_list, df_missing_fields):
""" return ordered dataFrame by the columns order list with null in missing columns """
if not df_missing_fields: # no missing fields for the df
return df.select(columns_order_list)
else:
columns = []
for colName in columns_order_list:
if colName not in df_missing_fields:
columns.append(colName)
else:
columns.append(lit(None).alias(colName))
return df.select(columns)
def __add_missing_columns(df, missing_column_names):
""" Add missing columns as null in the end of the columns list """
list_missing_columns = []
for col in missing_column_names:
list_missing_columns.append(lit(None).alias(col))
return df.select(df.schema.names + list_missing_columns)
def __order_and_union_d_fs(left_df, right_df, left_list_miss_cols, right_list_miss_cols):
""" return union of data frames with ordered columns by left_df. """
left_df_all_cols = __add_missing_columns(left_df, left_list_miss_cols)
right_df_all_cols = __order_df_and_add_missing_cols(right_df, left_df_all_cols.schema.names,
right_list_miss_cols)
return left_df_all_cols.union(right_df_all_cols)
def union_d_fs(left_df, right_df):
""" Union between two dataFrames, if there is a gap of column fields,
it will append all missing columns as nulls """
# Check for None input
if left_df is None:
raise ValueError('left_df parameter should not be None')
if right_df is None:
raise ValueError('right_df parameter should not be None')
# For data frames with equal columns and order- regular union
if left_df.schema.names == right_df.schema.names:
return left_df.union(right_df)
else: # Different columns
# Save dataFrame columns name list as set
left_df_col_list = set(left_df.schema.names)
right_df_col_list = set(right_df.schema.names)
# Diff columns between left_df and right_df
right_list_miss_cols = list(left_df_col_list - right_df_col_list)
left_list_miss_cols = list(right_df_col_list - left_df_col_list)
return __order_and_union_d_fs(left_df, right_df, left_list_miss_cols, right_list_miss_cols)
Voici une solution pyspark.
Il part du principe que si un champ dans df1
est absent de df2
puis vous ajoutez le champ manquant à df2
avec des valeurs nulles. Cependant, il suppose également que si le champ existe dans les deux bases de données, mais que le type ou la nullité du champ est différent, alors les deux bases de données sont en conflit et ne peuvent être combinées. Dans ce cas, je soulève un TypeError
.
from pyspark.sql.functions import lit
def harmonize_schemas_and_combine(df_left, df_right):
left_types = {f.name: f.dataType for f in df_left.schema}
right_types = {f.name: f.dataType for f in df_right.schema}
left_fields = set((f.name, f.dataType, f.nullable) for f in df_left.schema)
right_fields = set((f.name, f.dataType, f.nullable) for f in df_right.schema)
# First go over left-unique fields
for l_name, l_type, l_nullable in left_fields.difference(right_fields):
if l_name in right_types:
r_type = right_types[l_name]
if l_type != r_type:
raise TypeError, "Union failed. Type conflict on field %s. left type %s, right type %s" % (l_name, l_type, r_type)
else:
raise TypeError, "Union failed. Nullability conflict on field %s. left nullable %s, right nullable %s" % (l_name, l_nullable, not(l_nullable))
df_right = df_right.withColumn(l_name, lit(None).cast(l_type))
# Now go over right-unique fields
for r_name, r_type, r_nullable in right_fields.difference(left_fields):
if r_name in left_types:
l_type = left_types[r_name]
if r_type != l_type:
raise TypeError, "Union failed. Type conflict on field %s. right type %s, left type %s" % (r_name, r_type, l_type)
else:
raise TypeError, "Union failed. Nullability conflict on field %s. right nullable %s, left nullable %s" % (r_name, r_nullable, not(r_nullable))
df_left = df_left.withColumn(r_name, lit(None).cast(r_type))
# Make sure columns are in the same order
df_left = df_left.select(df_right.columns)
return df_left.union(df_right)
Bizarrement, lorsque j'exécute ce programme, j'obtiens une pyspark.sql.utils.AnalysisException: u"unresolved operator 'Union;"
. Cela semble être une sorte de bogue d'étincelle - peut-être que quelqu'un d'autre sait ce qui se passe ?
Essayez de définir votre contexte sqlCtx.sql("SET spark.sql.parquet.binaryAsString=true")
cela a résolu mon problème
@conradlee juste pour info - union a remplacé unionAll depuis Spark v2.0 - donc peut-être que vous êtes sur Spark < v2.0 ?
Modification de la version d'Alberto Bonsanto pour préserver l'ordre original des colonnes (OP impliquait que l'ordre devait correspondre aux tables originales). De plus, le match
a provoqué un avertissement d'Intellij.
Voici ma version :
def unionDifferentTables(df1: DataFrame, df2: DataFrame): DataFrame = {
val cols1 = df1.columns.toSet
val cols2 = df2.columns.toSet
val total = cols1 ++ cols2 // union
val order = df1.columns ++ df2.columns
val sorted = total.toList.sortWith((a,b)=> order.indexOf(a) < order.indexOf(b))
def expr(myCols: Set[String], allCols: List[String]) = {
allCols.map( {
case x if myCols.contains(x) => col(x)
case y => lit(null).as(y)
})
}
df1.select(expr(cols1, sorted): _*).unionAll(df2.select(expr(cols2, sorted): _*))
}
Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.