58 votes

Quels sont les différents types de jointures dans Spark?

J'ai regardé les docs et il dit ce qui suit types de jointure sont pris en charge:

Type de jointure à effectuer. Par défaut intérieure. Doit être: intérieure, de la croix, extérieur, complet, full_outer, à gauche, left_outer, droit, right_outer, left_semi, left_anti.

J'ai regardé la StackOverflow réponse sur les jointures SQL et haut couple de réponses de ne pas mentionner certains des jointures à partir de ci-dessus par exemple, left_semi et left_anti. Que signifient-ils dans l'Étincelle?

108voto

wrick Points 1825

Voici une expérience illustrative simple:

 import org.apache.spark._
import org.apache.spark.sql._
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions._

object SparkSandbox extends App {

  case class Row(id: Int, value: String)

  private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()
  import spark.implicits._
  spark.sparkContext.setLogLevel("ERROR")

  val r1 = Seq(Row(1, "A1"), Row(2, "A2"), Row(3, "A3"), Row(4, "A4")).toDS()
  val r2 = Seq(Row(3, "A3"), Row(4, "A4"), Row(4, "A4_1"), Row(5, "A5"), Row(6, "A6")).toDS()

  val joinTypes = Seq("inner", "outer", "full", "full_outer", "left", "left_outer", "right", "right_outer", "left_semi", "left_anti")

  joinTypes foreach {joinType =>
    println(s"${joinType.toUpperCase()} JOIN")
    r1.join(right = r2, usingColumns = Seq("id"), joinType = joinType).orderBy("id").show()
  }
}
 

Production

  INNER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
+---+-----+-----+

OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  1|   A1| null|
|  2|   A2| null|
|  3|   A3|   A3|
|  4|   A4|   A4|
|  4|   A4| A4_1|
|  5| null|   A5|
|  6| null|   A6|
+---+-----+-----+

FULL JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  1|   A1| null|
|  2|   A2| null|
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
|  5| null|   A5|
|  6| null|   A6|
+---+-----+-----+

FULL_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  1|   A1| null|
|  2|   A2| null|
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
|  5| null|   A5|
|  6| null|   A6|
+---+-----+-----+

LEFT JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  1|   A1| null|
|  2|   A2| null|
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
+---+-----+-----+

LEFT_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  1|   A1| null|
|  2|   A2| null|
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
+---+-----+-----+

RIGHT JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  3|   A3|   A3|
|  4|   A4|   A4|
|  4|   A4| A4_1|
|  5| null|   A5|
|  6| null|   A6|
+---+-----+-----+

RIGHT_OUTER JOIN
+---+-----+-----+
| id|value|value|
+---+-----+-----+
|  3|   A3|   A3|
|  4|   A4| A4_1|
|  4|   A4|   A4|
|  5| null|   A5|
|  6| null|   A6|
+---+-----+-----+

LEFT_SEMI JOIN
+---+-----+
| id|value|
+---+-----+
|  3|   A3|
|  4|   A4|
+---+-----+

LEFT_ANTI JOIN
+---+-----+
| id|value|
+---+-----+
|  1|   A1|
|  2|   A2|
+---+-----+
 

8voto

jgp Points 460

J'ai adoré l'exemple de Pathikrit. Voici une traduction possible en Java à l'aide de Spark v2 et de cadres de données, y compris la jointure croisée.

 package net.jgp.books.sparkInAction.ch12.lab940AllJoins;

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

/**
 * All joins in a single app, inspired by
 * https://stackoverflow.com/questions/45990633/what-are-the-various-join-types-in-spark.
 * 
 * Used in Spark in Action 2e, http://jgp.net/sia
 * 
 * @author jgp
 */
public class AllJoinsApp {

  /**
   * main() is your entry point to the application.
   * 
   * @param args
   */
  public static void main(String[] args) {
    AllJoinsApp app = new AllJoinsApp();
    app.start();
  }

  /**
   * The processing code.
   */
  private void start() {
    // Creates a session on a local master
    SparkSession spark = SparkSession.builder()
        .appName("Processing of invoices")
        .master("local")
        .getOrCreate();

    StructType schema = DataTypes.createStructType(new StructField[] {
        DataTypes.createStructField(
            "id",
            DataTypes.IntegerType,
            false),
        DataTypes.createStructField(
            "value",
            DataTypes.StringType,
            false) });

    List<Row> rows = new ArrayList<Row>();
    rows.add(RowFactory.create(1, "A1"));
    rows.add(RowFactory.create(2, "A2"));
    rows.add(RowFactory.create(3, "A3"));
    rows.add(RowFactory.create(4, "A4"));
    Dataset<Row> dfLeft = spark.createDataFrame(rows, schema);
    dfLeft.show();

    rows = new ArrayList<Row>();
    rows.add(RowFactory.create(3, "A3"));
    rows.add(RowFactory.create(4, "A4"));
    rows.add(RowFactory.create(4, "A4_1"));
    rows.add(RowFactory.create(5, "A5"));
    rows.add(RowFactory.create(6, "A6"));
    Dataset<Row> dfRight = spark.createDataFrame(rows, schema);
    dfRight.show();

    String[] joinTypes = new String[] { 
        "inner", // v2.0.0. default
        "cross", // v2.2.0
        "outer", // v2.0.0
        "full", // v2.1.1
        "full_outer", // v2.1.1
        "left", // v2.1.1
        "left_outer", // v2.0.0
        "right", // v2.1.1
        "right_outer", // v2.0.0
        "left_semi", // v2.0.0, was leftsemi before v2.1.1
        "left_anti" // v2.1.1
        };

    for (String joinType : joinTypes) {
      System.out.println(joinType.toUpperCase() + " JOIN");
      Dataset<Row> df = dfLeft.join(
          dfRight, 
          dfLeft.col("id").equalTo(dfRight.col("id")), 
          joinType);
      df.orderBy(dfLeft.col("id")).show();
    }
  }
}
 

Je vais mettre cet exemple dans le référentiel Spark in Action, chapitre 12 de 2e .

2voto

user2517035 Points 1
Spark data frame support following types of joins between two dataframes.
Please find the list of joins and joining string with respect to join types along with scala syntax.
We can use following joining values used for specify the join type in Scala- Spark code. 
***Mathod:*** Leftdataframe.join(Rightdataframe, join_conditions, joinStringName)

Join Name : Join String name in scala -Spark code

1. inner : 'inner'
2. cross: 'cross'
3. outer: 'outer'
4. full: 'full'
5. full outer: 'fullouter'
6. left : 'left'
7. left outer : 'leftouter'
8. right : 'right'
9. right outer : 'rightouter'
10. left semi: 'leftsemi'
11. left anti: 'leftanti'

example: 1. Left Semi join: 
Leftdataframe.join(Rightdataframe, join_conditions, "leftsemi");
2. inner Join Example:
Leftdataframe.join(Rightdataframe, join_conditions, "inner");

Its tested and working well.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X