Générateur de nombres pseudo-aléatoires congruentiels linéaires
Mémoire O(1)
Opérations O(k)
Ce problème peut être résolu par une simple Générateur linéaire de congruence . Cela nécessite une charge mémoire constante (8 entiers) et au plus 2*(longueur de la séquence) de calculs.
Toutes les autres solutions utilisent plus de mémoire et plus de calcul ! Si vous n'avez besoin que de quelques séquences aléatoires, cette méthode sera nettement moins chère. Pour les plages de taille N
si vous souhaitez générer un chiffre d'affaires de l'ordre de 1,5 milliard d'euros. N
unique k
-ou plus, je recommande la solution acceptée en utilisant les méthodes intégrées. random.sample(range(N),k)
comme ceci a été optimisé en python pour plus de rapidité.
Code
# Return a randomized "range" using a Linear Congruential Generator
# to produce the number sequence. Parameters are the same as for
# python builtin "range".
# Memory -- storage for 8 integers, regardless of parameters.
# Compute -- at most 2*"maximum" steps required to generate sequence.
#
def random_range(start, stop=None, step=None):
import random, math
# Set a default values the same way "range" does.
if (stop == None): start, stop = 0, start
if (step == None): step = 1
# Use a mapping to convert a standard range into the desired range.
mapping = lambda i: (i*step) + start
# Compute the number of numbers in this range.
maximum = (stop - start) // step
# Seed range with a random integer.
value = random.randint(0,maximum)
#
# Construct an offset, multiplier, and modulus for a linear
# congruential generator. These generators are cyclic and
# non-repeating when they maintain the properties:
#
# 1) "modulus" and "offset" are relatively prime.
# 2) ["multiplier" - 1] is divisible by all prime factors of "modulus".
# 3) ["multiplier" - 1] is divisible by 4 if "modulus" is divisible by 4.
#
offset = random.randint(0,maximum) * 2 + 1 # Pick a random odd-valued offset.
multiplier = 4*(maximum//4) + 1 # Pick a multiplier 1 greater than a multiple of 4.
modulus = int(2**math.ceil(math.log2(maximum))) # Pick a modulus just big enough to generate all numbers (power of 2).
# Track how many random numbers have been returned.
found = 0
while found < maximum:
# If this is a valid value, yield it in generator fashion.
if value < maximum:
found += 1
yield mapping(value)
# Calculate the next value in the sequence.
value = (value*multiplier + offset) % modulus
Utilisation
L'utilisation de cette fonction "random_range" est la même que pour tout générateur (comme "range"). Un exemple :
# Show off random range.
print()
for v in range(3,6):
v = 2**v
l = list(random_range(v))
print("Need",v,"found",len(set(l)),"(min,max)",(min(l),max(l)))
print("",l)
print()
Résultats de l'échantillon
Required 8 cycles to generate a sequence of 8 values.
Need 8 found 8 (min,max) (0, 7)
[1, 0, 7, 6, 5, 4, 3, 2]
Required 16 cycles to generate a sequence of 9 values.
Need 9 found 9 (min,max) (0, 8)
[3, 5, 8, 7, 2, 6, 0, 1, 4]
Required 16 cycles to generate a sequence of 16 values.
Need 16 found 16 (min,max) (0, 15)
[5, 14, 11, 8, 3, 2, 13, 1, 0, 6, 9, 4, 7, 12, 10, 15]
Required 32 cycles to generate a sequence of 17 values.
Need 17 found 17 (min,max) (0, 16)
[12, 6, 16, 15, 10, 3, 14, 5, 11, 13, 0, 1, 4, 8, 7, 2, ...]
Required 32 cycles to generate a sequence of 32 values.
Need 32 found 32 (min,max) (0, 31)
[19, 15, 1, 6, 10, 7, 0, 28, 23, 24, 31, 17, 22, 20, 9, ...]
Required 64 cycles to generate a sequence of 33 values.
Need 33 found 33 (min,max) (0, 32)
[11, 13, 0, 8, 2, 9, 27, 6, 29, 16, 15, 10, 3, 14, 5, 24, ...]
2 votes
S'ils sont uniques, ils peuvent être véritablement aléatoires dans le bon contexte. Comme un échantillon aléatoire d'index sans remplacement peut encore être complètement aléatoire.