Si vous avez moins de 4 lignes, vous pouvez utiliser la fonction head
( head(data, 4)
ou head(data, n=4)
) et cela fonctionne à merveille. Mais, supposons que nous avons l'ensemble de données suivant avec 15 lignes
>data <- data <- read.csv("./data.csv", sep = ";", header=TRUE)
>data
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
Disons que vous voulez sélectionner les 10 premières lignes. La manière la plus simple de le faire serait data[1:10, ]
.
> data[1:10,]
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
Cependant, si vous essayez de récupérer les 19 premières lignes et voir ce qui se passe - vous obtiendrez des valeurs manquantes
> data[1:19,]
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
NA NA NA NA
NA.1 NA NA NA
NA.2 NA NA NA
NA.3 NA NA NA
et avec la fonction head(),
> head(data, 19) # or head(data, n=19)
LungCap Age Height Smoke Gender Caesarean
1 6.475 6 62.1 no male no
2 10.125 18 74.7 yes female no
3 9.550 16 69.7 no female yes
4 11.125 14 71.0 no male no
5 4.800 5 56.9 no male no
6 6.225 11 58.7 no female no
7 4.950 8 63.3 no male yes
8 7.325 11 70.4 no male no
9 8.875 15 70.5 no male no
10 6.800 11 59.2 no male no
11 6.900 12 59.3 no male no
12 6.100 13 59.4 no male no
13 6.110 14 59.5 no male no
14 6.120 15 59.6 no male no
15 6.130 16 59.7 no male no
J'espère que cela vous aide!