Vous pouvez utiliser pd.PeriodIndex() método.
Supposons que vous ayez le DF suivant :
In [517]: x
Out[517]:
str_col
0 1971q1
1 1971q2
2 1971q3
3 1971q4
4 1972q1
5 1972q2
6 1972q3
7 1972q4
In [518]: x.dtypes
Out[518]:
str_col object
dtype: object
créons une nouvelle colonne "période" :
In [519]: x['period'] = pd.PeriodIndex(x.str_col, freq='Q')
In [520]: x
Out[520]:
str_col period
0 1971q1 1971Q1
1 1971q2 1971Q2
2 1971q3 1971Q3
3 1971q4 1971Q4
4 1972q1 1972Q1
5 1972q2 1972Q2
6 1972q3 1972Q3
7 1972q4 1972Q4
In [521]: x.dtypes
Out[521]:
str_col object
period object
dtype: object
Nous pouvons maintenant faire de l'"algèbre du temps", par exemple en soustrayant un trimestre de chaque période :
In [525]: x.period - 1
Out[525]:
0 1970Q4
1 1971Q1
2 1971Q2
3 1971Q3
4 1971Q4
5 1972Q1
6 1972Q2
7 1972Q3
Name: period, dtype: object
Alternativement, vous pouvez lancer l'option str_col
à la colonne régulière de Pandas/NumPy. datetime
:
In [527]: pd.to_datetime(x.str_col, errors='coerce')
Out[527]:
0 1971-01-01
1 1971-04-01
2 1971-07-01
3 1971-10-01
4 1972-01-01
5 1972-04-01
6 1972-07-01
7 1972-10-01
Name: str_col, dtype: datetime64[ns]