J'ai 3 cadres de données : df1
, df2
, df3
. J'essaie de remplir NaN
valeurs de df1
avec certaines valeurs contenues dans df2
. Les valeurs choisies parmi df2
sont également sélectionnés en fonction de la sortie d'une fonction simple ( mul_val
) qui traite certaines données stockées dans df3
.
J'ai pu obtenir ce résultat mais j'aimerais trouver un code plus simple, plus facile et plus lisible.
Voici ce que j'ai jusqu'à présent :
import pandas as pd
import numpy as np
# simple function
def mul_val(a,b):
return a*b
# dataframe 1
data = {'Name':['PINO','PALO','TNCO' ,'TNTO','CUCO' ,'FIGO','ONGF','LABO'],
'Id' :[ 10 , 9 ,np.nan , 14 , 3 ,np.nan, 7 ,np.nan]}
df1 = pd.DataFrame(data)
# dataframe 2
infos = {'Info_a':[10,20,30,40,70,80,90,50,60,80,40,50,20,30,15,11],
'Info_b':[10,30,30,60,10,85,99,50,70,20,30,50,20,40,16,17]}
df2 = pd.DataFrame(infos)
dic = {'Name': {0: 'FIGO', 1: 'TNCO'},
'index': {0: [5, 6], 1: [11, 12, 13]}}
df3 = pd.DataFrame(dic)
#---------------Modify from here in the most efficient way!-----------------
for idx,row in df3.iterrows():
store_val = []
print(row['Name'])
for j in row['index']:
store_val.append([mul_val(df2['Info_a'][j],df2['Info_b'][j]),j])
store_val = np.asarray(store_val)
# - Identify which is the index of minimum value of the first column
indx_min_val = np.argmin(store_val[:,0])
# - Get the value relative number contained in the second column
col_value = row['index'][indx_min_val]
# Identify value to be replaced in df1
value_to_be_replaced = df1['Id'][df1['Name']==row['Name']]
# - Replace such value into the df1 having the same row['Name']
df1['Id'].replace(to_replace=value_to_be_replaced,value=col_value, inplace=True)
Par impression store_val
à chaque itération que je reçois :
FIGO
[[6800 5]
[8910 6]]
TNCO
[[2500 11]
[ 400 12]
[1200 13]]
Faisons un exemple simple : considérant FIGO
j'identifie 6800
comme le nombre minimum entre 6800
et 8910
. Je choisis donc le nombre 5
qui est placé dans df1
. En répétant cette opération pour les rangées restantes de df3
(dans ce cas, je n'ai que 2 lignes mais il pourrait y en avoir beaucoup plus), le résultat final devrait être comme ceci :
In[0]: before In[0]: after
Out[0]: Out[0]:
Id Name Id Name
0 10.0 PINO 0 10.0 PINO
1 9.0 PALO 1 9.0 PALO
2 NaN TNCO -----> 2 12.0 TNCO
3 14.0 TNTO 3 14.0 TNTO
4 3.0 CUCO 4 3.0 CUCO
5 NaN FIGO -----> 5 5.0 FIGO
6 7.0 ONGF 6 7.0 ONGF
7 NaN LABO 7 NaN LABO
Nore : vous pouvez également supprimer les boucles for si nécessaire et utiliser différents types de formats pour stocker les données (liste, tableaux...) ; l'important est que le résultat final soit toujours un dataframe.