2 votes

Comment puis-je obtenir une latente qui a été utilisée pour générer une image pendant le processus de projection dans StyleGAN2 ?

Pregunta: Comment puis-je obtenir une latente qui a été utilisée pour générer une image pendant le processus de projection de StyleGAN2 ?

Bonjour ! Je m'amuse avec le carnet de notes StyleGAN2. https://colab.research.google.com/drive/1ShgW6wohEFQtqs_znMna3dzrcVoABKIH . Il peut générer des images de visage en haute résolution 1024x1024 et plus. Ce que j'ai essayé, c'est de trouver le visage générable ressemblant le plus à Christiano Ronaldo. J'ai exécuté leur code, ça a bien marché :

Généré Christiano Ronaldo

J'ai ensuite modifié la méthode qui projetait Ronaldo pour qu'elle me renvoie l'objet projecteur, je l'ai exécutée à nouveau et j'ai enregistré l'objet dans une variable.

Classe de projecteur :

# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html

import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib

from training import misc

#----------------------------------------------------------------------------

class Projector:
    def __init__(self):
        self.num_steps                  = 1000
        self.dlatent_avg_samples        = 10000
        self.initial_learning_rate      = 0.1
        self.initial_noise_factor       = 0.05
        self.lr_rampdown_length         = 0.25
        self.lr_rampup_length           = 0.05
        self.noise_ramp_length          = 0.75
        self.regularize_noise_weight    = 1e5
        self.verbose                    = False
        self.clone_net                  = True

        self._Gs                    = None
        self._minibatch_size        = None
        self._dlatent_avg           = None
        self._dlatent_std           = None
        self._noise_vars            = None
        self._noise_init_op         = None
        self._noise_normalize_op    = None
        self._dlatents_var          = None
        self._noise_in              = None
        self._dlatents_expr         = None
        self._images_expr           = None
        self._target_images_var     = None
        self._lpips                 = None
        self._dist                  = None
        self._loss                  = None
        self._reg_sizes             = None
        self._lrate_in              = None
        self._opt                   = None
        self._opt_step              = None
        self._cur_step              = None

    def _info(self, *args):
        if self.verbose:
            print('Projector:', *args)

    def set_network(self, Gs, minibatch_size=1):
        assert minibatch_size == 1
        self._Gs = Gs
        self._minibatch_size = minibatch_size
        if self._Gs is None:
            return
        if self.clone_net:
            self._Gs = self._Gs.clone()

        # Find dlatent stats.
        self._info('Finding W midpoint and stddev using %d samples...' % self.dlatent_avg_samples)
        latent_samples = np.random.RandomState(123).randn(self.dlatent_avg_samples, *self._Gs.input_shapes[0][1:])
        dlatent_samples = self._Gs.components.mapping.run(latent_samples, None)[:, :1, :] # [N, 1, 512]
        self._dlatent_avg = np.mean(dlatent_samples, axis=0, keepdims=True) # [1, 1, 512]
        self._dlatent_std = (np.sum((dlatent_samples - self._dlatent_avg) ** 2) / self.dlatent_avg_samples) ** 0.5
        self._info('std = %g' % self._dlatent_std)

        # Find noise inputs.
        self._info('Setting up noise inputs...')
        self._noise_vars = []
        noise_init_ops = []
        noise_normalize_ops = []
        while True:
            n = 'G_synthesis/noise%d' % len(self._noise_vars)
            if not n in self._Gs.vars:
                break
            v = self._Gs.vars[n]
            self._noise_vars.append(v)
            noise_init_ops.append(tf.assign(v, tf.random_normal(tf.shape(v), dtype=tf.float32)))
            noise_mean = tf.reduce_mean(v)
            noise_std = tf.reduce_mean((v - noise_mean)**2)**0.5
            noise_normalize_ops.append(tf.assign(v, (v - noise_mean) / noise_std))
            self._info(n, v)
        self._noise_init_op = tf.group(*noise_init_ops)
        self._noise_normalize_op = tf.group(*noise_normalize_ops)

        # Image output graph.
        self._info('Building image output graph...')
        self._dlatents_var = tf.Variable(tf.zeros([self._minibatch_size] + list(self._dlatent_avg.shape[1:])), name='dlatents_var')
        self._noise_in = tf.placeholder(tf.float32, [], name='noise_in')
        dlatents_noise = tf.random.normal(shape=self._dlatents_var.shape) * self._noise_in
        self._dlatents_expr = tf.tile(self._dlatents_var + dlatents_noise, [1, self._Gs.components.synthesis.input_shape[1], 1])
        self._images_expr = self._Gs.components.synthesis.get_output_for(self._dlatents_expr, randomize_noise=False)

        # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
        proc_images_expr = (self._images_expr + 1) * (255 / 2)
        sh = proc_images_expr.shape.as_list()
        if sh[2] > 256:
            factor = sh[2] // 256
            proc_images_expr = tf.reduce_mean(tf.reshape(proc_images_expr, [-1, sh[1], sh[2] // factor, factor, sh[2] // factor, factor]), axis=[3,5])

        # Loss graph.
        self._info('Building loss graph...')
        self._target_images_var = tf.Variable(tf.zeros(proc_images_expr.shape), name='target_images_var')
        if self._lpips is None:
            self._lpips = misc.load_pkl('http://d36zk2xti64re0.cloudfront.net/stylegan1/networks/metrics/vgg16_zhang_perceptual.pkl')
        self._dist = self._lpips.get_output_for(proc_images_expr, self._target_images_var)
        self._loss = tf.reduce_sum(self._dist)

        # Noise regularization graph.
        self._info('Building noise regularization graph...')
        reg_loss = 0.0
        for v in self._noise_vars:
            sz = v.shape[2]
            while True:
                reg_loss += tf.reduce_mean(v * tf.roll(v, shift=1, axis=3))**2 + tf.reduce_mean(v * tf.roll(v, shift=1, axis=2))**2
                if sz <= 8:
                    break # Small enough already
                v = tf.reshape(v, [1, 1, sz//2, 2, sz//2, 2]) # Downscale
                v = tf.reduce_mean(v, axis=[3, 5])
                sz = sz // 2
        self._loss += reg_loss * self.regularize_noise_weight

        # Optimizer.
        self._info('Setting up optimizer...')
        self._lrate_in = tf.placeholder(tf.float32, [], name='lrate_in')
        self._opt = dnnlib.tflib.Optimizer(learning_rate=self._lrate_in)
        self._opt.register_gradients(self._loss, [self._dlatents_var] + self._noise_vars)
        self._opt_step = self._opt.apply_updates()

    def run(self, target_images):
        # Run to completion.
        self.start(target_images)
        while self._cur_step < self.num_steps:
            self.step()

        # Collect results.
        pres = dnnlib.EasyDict()
        pres.dlatents = self.get_dlatents()
        pres.noises = self.get_noises()
        pres.images = self.get_images()
        return pres

    def start(self, target_images):
        assert self._Gs is not None

        # Prepare target images.
        self._info('Preparing target images...')
        target_images = np.asarray(target_images, dtype='float32')
        target_images = (target_images + 1) * (255 / 2)
        sh = target_images.shape
        assert sh[0] == self._minibatch_size
        if sh[2] > self._target_images_var.shape[2]:
            factor = sh[2] // self._target_images_var.shape[2]
            target_images = np.reshape(target_images, [-1, sh[1], sh[2] // factor, factor, sh[3] // factor, factor]).mean((3, 5))

        # Initialize optimization state.
        self._info('Initializing optimization state...')
        tflib.set_vars({self._target_images_var: target_images, self._dlatents_var: np.tile(self._dlatent_avg, [self._minibatch_size, 1, 1])})
        tflib.run(self._noise_init_op)
        self._opt.reset_optimizer_state()
        self._cur_step = 0

    def step(self):
        assert self._cur_step is not None
        if self._cur_step >= self.num_steps:
            return
        if self._cur_step == 0:
            self._info('Running...')

        # Hyperparameters.
        t = self._cur_step / self.num_steps
        noise_strength = self._dlatent_std * self.initial_noise_factor * max(0.0, 1.0 - t / self.noise_ramp_length) ** 2
        lr_ramp = min(1.0, (1.0 - t) / self.lr_rampdown_length)
        lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
        lr_ramp = lr_ramp * min(1.0, t / self.lr_rampup_length)
        learning_rate = self.initial_learning_rate * lr_ramp

        # Train.
        feed_dict = {self._noise_in: noise_strength, self._lrate_in: learning_rate}
        _, dist_value, loss_value = tflib.run([self._opt_step, self._dist, self._loss], feed_dict)
        tflib.run(self._noise_normalize_op)

        # Print status.
        self._cur_step += 1
        if self._cur_step == self.num_steps or self._cur_step % 10 == 0:
            self._info('%-8d%-12g%-12g' % (self._cur_step, dist_value, loss_value))
        if self._cur_step == self.num_steps:
            self._info('Done.')

    def get_cur_step(self):
        return self._cur_step

    def get_dlatents(self):
        return tflib.run(self._dlatents_expr, {self._noise_in: 0})

    def get_noises(self):
        return tflib.run(self._noise_vars)

    def get_images(self):
        return tflib.run(self._images_expr, {self._noise_in: 0})

#----------------------------------------------

J'ai obtenu cet objet, appelé la méthode get_dlatents, en pensant que c'est la latente d'entrée qui a produit Christiano.

Génération d'une image avec cette latente, clairement pas proche de Ronaldo ("proji" est l'objet Projecteur)

latents = proji.get_dlatents()

latent = latents[0][17]
latent = np.reshape(latent, (1,512))

img = generate_images([latent],1.0)[0]
imshow(img)

Résultat : c'était censé être Ronaldo

Je ne sais pas si j'ai fait une erreur de pensée ou de codage, tout ce que je veux savoir c'est : Comment puis-je obtenir une latente qui a été utilisée pour générer une image pendant le processus de projection ? Pour le comprendre, vous devez probablement consulter le cahier de liaison vous-même, je ne voulais pas tout coller ici.

Merci d'avoir pris le temps de regarder ça.

1voto

colt.exe Points 44

Je ne sais pas si votre question est toujours d'actualité, mais ce que vous cherchez projecting an image to the latent space . Este La page github est propre et précise. Après avoir configuré l'environnement, en 2 étapes vous pouvez obtenir vos latents.

Extraire et aligner des visages à partir d'images : python align_images.py raw_images/ aligned_images/ et pour trouver la représentation latente des images alignées, utilisez python encode_images.py aligned_images/ generated_images/ latent_representations/ . Sous latent_representations dossier vous aurez vos latences. Vous pouvez maintenant utiliser ces latents pour générer les visages que vous souhaitez. Bonne chance.

Prograide.com

Prograide est une communauté de développeurs qui cherche à élargir la connaissance de la programmation au-delà de l'anglais.
Pour cela nous avons les plus grands doutes résolus en français et vous pouvez aussi poser vos propres questions ou résoudre celles des autres.

Powered by:

X