J'ai ce callback personnalisé pour enregistrer la récompense dans mon environnement vectoriel personnalisé, mais la récompense apparaît dans la console comme toujours [0] et n'est pas enregistrée du tout dans tensorboard.
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard.
"""
def __init__(self, verbose=0):
super(TensorboardCallback, self).__init__(verbose)
def _on_step(self) -> bool:
self.logger.record('reward', self.training_env.get_attr('total_reward'))
return True
Et ceci fait partie de la fonction principale
model = PPO(
"MlpPolicy", env,
learning_rate=3e-4,
policy_kwargs=policy_kwargs,
verbose=1,
# as the environment is not serializable, we need to set a new instance of the environment
loaded_model = model = PPO.load("model", env=env)
loaded_model.set_env(env)
# and continue training
loaded_model.learn(1e+6, callback=TensorboardCallback())
tensorboard_log="./tensorboard/")